Displaying 221 – 240 of 716

Showing per page

High order regularity for subelliptic operators on Lie groups of polynomial growth.

Nick Dungey (2005)

Revista Matemática Iberoamericana

Let G be a Lie group of polynomial volume growth, with Lie algebra g. Consider a second-order, right-invariant, subelliptic differential operator H on G, and the associated semigroup St = e-tH. We identify an ideal n' of g such that H satisfies global regularity estimates for spatial derivatives of all orders, when the derivatives are taken in the direction of n'. The regularity is expressed as L2 estimates for derivatives of the semigroup, and as Gaussian bounds for derivatives of the heat kernel....

Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms

Salvatore Bonafede (2018)

Commentationes Mathematicae Universitatis Carolinae

We prove the local Hölder continuity of bounded generalized solutions of the Dirichlet problem associated to the equation i = 1 m x i a i ( x , u , u ) - c 0 | u | p - 2 u = f ( x , u , u ) , assuming that the principal part of the equation satisfies the following degenerate ellipticity condition λ ( | u | ) i = 1 m a i ( x , u , η ) η i ν ( x ) | η | p , and the lower-order term f has a natural growth with respect to u .

Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations

Guy Barles, Emmanuel Chasseigne, Cyril Imbert (2011)

Journal of the European Mathematical Society

This paper is concerned with the Hölder regularity of viscosity solutions of second-order, fully non-linear elliptic integro-differential equations. Our results rely on two key ingredients: first we assume that, at each point of the domain, either the equation is strictly elliptic in the classical fully non-linear sense, or (and this is the most original part of our work) the equation is strictly elliptic in a non-local non-linear sense we make precise. Next we impose some regularity and growth...

Hölder continuous solutions to Monge–Ampère equations

Jean-Pierre Demailly, Sławomir Dinew, Vincent Guedj, Pham Hoang Hiep, Sławomir Kołodziej, Ahmed Zeriahi (2014)

Journal of the European Mathematical Society

Let ( X , ω ) be a compact Kähler manifold. We obtain uniform Hölder regularity for solutions to the complex Monge-Ampère equation on X with L p right hand side, p > 1 . The same regularity is furthermore proved on the ample locus in any big cohomology class. We also study the range ( X , ω ) of the complex Monge-Ampère operator acting on ω -plurisubharmonic Hölder continuous functions. We show that this set is convex, by sharpening Kołodziej’s result that measures with L p -density belong to ( X , ω ) and proving that ( X , ω ) has the...

Holomorphic subordinated semigroups

Adel Saddi (2002)

Commentationes Mathematicae Universitatis Carolinae

If ( e - t A ) t > 0 is a strongly continuous and contractive semigroup on a complex Banach space B , then - ( - A ) α , 0 < α < 1 , generates a holomorphic semigroup on B . This was proved by K. Yosida in [7]. Using similar techniques, we present a class H of Bernstein functions such that for all f H , the operator - f ( - A ) generates a holomorphic semigroup.

Currently displaying 221 – 240 of 716