Remarks about Signorini's problem in linear elasticity
We consider the axisymmetric Navier-Stokes equations with non-zero swirl component. By invoking the Hardy-Sobolev interpolation inequality, Hardy inequality and the theory of (1 < β < ∞) weights, we establish regularity criteria involving , or in some weighted Lebesgue spaces. This improves many previous results.
We study the axisymmetric Navier-Stokes equations. In 2010, Loftus-Zhang used a refined test function and re-scaling scheme, and showed that By employing the dimension reduction technique by Lei-Navas-Zhang, and analyzing , and on different hollow cylinders, we are able to improve it and obtain
We study the Cauchy problem for the MHD system, and provide two regularity conditions involving horizontal components (or their gradients) in Besov spaces. This improves previous results.
We study existence, uniqueness, and smoothing properties of the solutions to a class of linear second order elliptic and parabolic differential equations with unbounded coefficients in . The main results are global Schauder estimates, which hold in spite of the unboundedness of the coefficients.
We consider the Cauchy problem for the three-dimensional Navier-Stokes equations, and provide an optimal regularity criterion in terms of and , which are the third components of the velocity and vorticity, respectively. This gives an affirmative answer to an open problem in the paper by P. Penel, M. Pokorný (2004).