Displaying 1921 – 1940 of 5234

Showing per page

Homogenization and diffusion asymptotics of the linear Boltzmann equation

Thierry Goudon, Antoine Mellet (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We investigate the diffusion limit for general conservative Boltzmann equations with oscillating coefficients. Oscillations have a frequency of the same order as the inverse of the mean free path, and the coefficients may depend on both slow and fast variables. Passing to the limit, we are led to an effective drift-diffusion equation. We also describe the diffusive behaviour when the equilibrium function has a non-vanishing flux.

Homogenization and Diffusion Asymptotics of the Linear Boltzmann Equation

Thierry Goudon, Antoine Mellet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We investigate the diffusion limit for general conservative Boltzmann equations with oscillating coefficients. Oscillations have a frequency of the same order as the inverse of the mean free path, and the coefficients may depend on both slow and fast variables. Passing to the limit, we are led to an effective drift-diffusion equation. We also describe the diffusive behaviour when the equilibrium function has a non-vanishing flux.

Homogenization and localization in locally periodic transport

Grégoire Allaire, Guillaume Bal, Vincent Siess (2002)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study the homogenization and localization of a spectral transport equation posed in a locally periodic heterogeneous domain. This equation models the equilibrium of particles interacting with an underlying medium in the presence of a creation mechanism such as, for instance, neutrons in nuclear reactors. The physical coefficients of the domain are ε -periodic functions modulated by a macroscopic variable, where ε is a small parameter. The mean free path of the particles is also...

Homogenization and localization in locally periodic transport

Grégoire Allaire, Guillaume Bal, Vincent Siess (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study the homogenization and localization of a spectral transport equation posed in a locally periodic heterogeneous domain. This equation models the equilibrium of particles interacting with an underlying medium in the presence of a creation mechanism such as, for instance, neutrons in nuclear reactors. The physical coefficients of the domain are ε-periodic functions modulated by a macroscopic variable, where ε is a small parameter. The mean free path of the particles...

Homogenization at different linear scales, bounded martingales and the two-scale shuffle limit

Kévin Santugini (2013)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider two-scale limits obtained with increasing homogenization periods, each period being an entire multiple of the previous one. We establish that, up to a measure preserving rearrangement, these two-scale limits form a martingale which is bounded: the rearranged two-scale limits themselves converge both strongly in L2 and almost everywhere when the period tends to  +∞. This limit, called the Two-Scale Shuffle limit, contains all the information present in all the two-scale...

Homogenization in perforated domains with rapidly pulsing perforations

Doina Cioranescu, Andrey L. Piatnitski (2003)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of this paper is to study a class of domains whose geometry strongly depends on time namely. More precisely, we consider parabolic equations in perforated domains with rapidly pulsing (in time) periodic perforations, with a homogeneous Neumann condition on the boundary of the holes. We study the asymptotic behavior of the solutions as the period ε of the holes goes to zero. Since standard conservation laws do not hold in this model, a first difficulty is to get a priori estimates of the...

Homogenization in perforated domains with rapidly pulsing perforations

Doina Cioranescu, Andrey L. Piatnitski (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of this paper is to study a class of domains whose geometry strongly depends on time namely. More precisely, we consider parabolic equations in perforated domains with rapidly pulsing (in time) periodic perforations, with a homogeneous Neumann condition on the boundary of the holes. We study the asymptotic behavior of the solutions as the period ε of the holes goes to zero. Since standard conservation laws do not hold in this model, a first difficulty is to get a priori estimates...

Currently displaying 1921 – 1940 of 5234