Page 1 Next

Displaying 1 – 20 of 503

Showing per page

S -shaped component of nodal solutions for problem involving one-dimension mean curvature operator

Ruyun Ma, Zhiqian He, Xiaoxiao Su (2023)

Czechoslovak Mathematical Journal

Let E = { u C 1 [ 0 , 1 ] : u ( 0 ) = u ( 1 ) = 0 } . Let S k ν with ν = { + , - } denote the set of functions u E which have exactly k - 1 interior nodal zeros in (0, 1) and ν u be positive near 0 . We show the existence of S -shaped connected component of S k ν -solutions of the problem u ' 1 - u ' 2 ' + λ a ( x ) f ( u ) = 0 , x ( 0 , 1 ) , u ( 0 ) = u ( 1 ) = 0 , where λ > 0 is a parameter, a C ( [ 0 , 1 ] , ( 0 , ) ) . We determine the intervals of parameter λ in which the above problem has one, two or three S k ν -solutions. The proofs of the main results are based upon the bifurcation technique.

SAK principle for a class of Grushin-type operators.

Lidia Maniccia, Marco Mughetti (2006)

Revista Matemática Iberoamericana

We prove Fefferman's SAK Principle for a class of hypoelliptic operators on R2 whose nonnegative symbol vanishes anisotropically on the characteristic manifold.

Scalar boundary value problems on junctions of thin rods and plates

R. Bunoiu, G. Cardone, S. A. Nazarov (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We derive asymptotic formulas for the solutions of the mixed boundary value problem for the Poisson equation on the union of a thin cylindrical plate and several thin cylindrical rods. One of the ends of each rod is set into a hole in the plate and the other one is supplied with the Dirichlet condition. The Neumann conditions are imposed on the whole remaining part of the boundary. Elements of the junction are assumed to have contrasting properties so that the small parameter, i.e. the relative...

Scattering amplitude for the Schrödinger equation with strong magnetic field

Laurent Michel (2005)

Journées Équations aux dérivées partielles

In this note, we study the scattering amplitude for the Schrödinger equation with constant magnetic field. We consider the case where the strengh of the magnetic field goes to infinity and we discuss the competition between the magnetic and the electrostatic effects.

Scattering for 1D cubic NLS and singular vortex dynamics

Valeria Banica, Luis Vega (2012)

Journal of the European Mathematical Society

We study the stability of self-similar solutions of the binormal flow, which is a model for the dynamics of vortex filaments in fluids and super-fluids. These particular solutions χ a ( t , x ) form a family of evolving regular curves in 3 that develop a singularity in finite time, indexed by a parameter a > 0 . We consider curves that are small regular perturbations of χ a ( t 0 , x ) for a fixed time t 0 . In particular, their curvature is not vanishing at infinity, so we are not in the context of known results of local existence...

Scattering of small solutions of a symmetric regularized-long-wave equation

Sevdzhan Hakkaev (2004)

Applicationes Mathematicae

We study the decay in time of solutions of a symmetric regularized-long-wave equation and we show that under some restriction on the form of nonlinearity, the solutions of the nonlinear equation have the same long time behavior as those of the linear equation. This behavior allows us to establish a nonlinear scattering result for small perturbations.

Scattering theory for a nonlinear system of wave equations with critical growth

Changxing Miao, Youbin Zhu (2006)

Colloquium Mathematicae

We consider scattering properties of the critical nonlinear system of wave equations with Hamilton structure ⎧uₜₜ - Δu = -F₁(|u|²,|v|²)u, ⎨ ⎩vₜₜ - Δv = -F₂(|u|²,|v|²)v, for which there exists a function F(λ,μ) such that ∂F(λ,μ)/∂λ = F₁(λ,μ), ∂F(λ,μ)/∂μ = F₂(λ,μ). By using the energy-conservation law over the exterior of a truncated forward light cone and a dilation identity, we get a decay estimate for the potential...

Second order evolution equations with parameter

Jan Bochenek, Teresa Winiarska (1994)

Annales Polonici Mathematici

We give some theorems on continuity and differentiability with respect to (h,t) of the solution of a second order evolution problem with parameter h Ω m . Our main tool is the theory of strongly continuous cosine families of linear operators in Banach spaces.

Currently displaying 1 – 20 of 503

Page 1 Next