Page 1

Displaying 1 – 11 of 11

Showing per page

Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates.

José A. Carrillo, Robert J. McCann, Cédric Villani (2003)

Revista Matemática Iberoamericana

The long-time asymptotics of certain nonlinear , nonlocal, diffusive equations with a gradient flow structure are analyzed. In particular, a result of Benedetto, Caglioti, Carrillo and Pulvirenti [4] guaranteeing eventual relaxation to equilibrium velocities in a spatially homogencous model of granular flow is extended and quantified by computing explicit relaxation rates. Our arguments rely on establishing generalizations of logarithmic Sobolev inequalities and mass transportation inequalities,...

Klein-Gordon type decay rates for wave equations with time-dependent coefficients

Michael Reissig, Karen Yagdjian (2000)

Banach Center Publications

This work is concerned with the proof of L p - L q decay estimates for solutions of the Cauchy problem for the Klein-Gordon type equation u t t - λ 2 ( t ) b 2 ( t ) ( Δ u - m 2 u ) = 0 . The coefficient consists of an increasing smooth function λ and an oscillating smooth and bounded function b which are uniformly separated from zero. Moreover, m 2 is a positive constant. We study under which assumptions for λ and b one can expect as an essential part of the decay rate the classical Klein-Gordon decay rate n/2(1/p-1/q).

Korn's First Inequality with variable coefficients and its generalization

Waldemar Pompe (2003)

Commentationes Mathematicae Universitatis Carolinae

If Ω n is a bounded domain with Lipschitz boundary Ω and Γ is an open subset of Ω , we prove that the following inequality Ω | A ( x ) u ( x ) | p d x 1 / p + Γ | u ( x ) | p d n - 1 ( x ) 1 / p c u W 1 , p ( Ω ) holds for all u W 1 , p ( Ω ; m ) and 1 < p < , where ( A ( x ) u ( x ) ) k = i = 1 m j = 1 n a k i j ( x ) u i x j ( x ) ( k = 1 , 2 , ... , r ; r m ) defines an elliptic differential operator of first order with continuous coefficients on Ω ¯ . As a special case we obtain Ω u ( x ) F ( x ) + ( u ( x ) F ( x ) ) T p d x c Ω | u ( x ) | p d x , ( * ) for all u W 1 , p ( Ω ; n ) vanishing on Γ , where F : Ω ¯ M n × n ( ) is a continuous mapping with det F ( x ) μ > 0 . Next we show that ( * ) is not valid if n 3 , F L ( Ω ) and det F ( x ) = 1 , but does hold if p = 2 , Γ = Ω and F ( x ) is symmetric and positive definite in Ω .

Currently displaying 1 – 11 of 11

Page 1