Page 1 Next

Displaying 1 – 20 of 45

Showing per page

Wave equation and multiplier estimates on ax + b groups

Detlef Müller, Christoph Thiele (2007)

Studia Mathematica

Let L be the distinguished Laplacian on certain semidirect products of ℝ by ℝⁿ which are of ax + b type. We prove pointwise estimates for the convolution kernels of spectrally localized wave operators of the form e i t L ψ ( L / λ ) for arbitrary time t and arbitrary λ > 0, where ψ is a smooth bump function supported in [-2,2] if λ ≤ 1 and in [1,2] if λ ≥ 1. As a corollary, we reprove a basic multiplier estimate of Hebisch and Steger [Math. Z. 245 (2003)] for this particular class of groups, and derive Sobolev...

Wave Equation with Slowly Decaying Potential: asymptotics of Solution and Wave Operators

S. A. Denisov (2010)

Mathematical Modelling of Natural Phenomena

In this paper, we consider one-dimensional wave equation with real-valued square-summable potential. We establish the long-time asymptotics of solutions by, first, studying the stationary problem and, second, using the spectral representation for the evolution equation. In particular, we prove that part of the wave travels ballistically if q ∈ L2(ℝ+) and this result is sharp.

Waves of Autocrine Signaling in Patterned Epithelia

C. B. Muratov, S. Y. Shvartsman (2010)

Mathematical Modelling of Natural Phenomena

A biophysical model describing long-range cell-to-cell communication by a diffusible signal mediated by autocrine loops in developing epithelia in the presence of a morphogenetic pre-pattern is introduced. Under a number of approximations, the model reduces to a particular kind of bistable reaction-diffusion equation with strong heterogeneity. In the case of the heterogeneity in the form of a long strip a detailed analysis of signal propagation is...

Weak discrete maximum principles

Mohammad Mujalli Al-Mahameed (2005)

Archivum Mathematicum

We introduce weak discrete maximum principles for matrix equations associated with some elliptic problems. We also give an example on discrete maximum principles.

Weak- L p solutions for a model of self-gravitating particles with an external potential

Andrzej Raczyński (2007)

Studia Mathematica

The existence of solutions to a nonlinear parabolic equation describing the temporal evolution of a cloud of self-gravitating particles with a given external potential is studied in weak- L p spaces (i.e. Markiewicz spaces). The main goal is to prove the existence of global solutions and to study their large time behaviour.

Weak linking theorems and Schrödinger equations with critical Sobolev exponent

Martin Schechter, Wenming Zou (2003)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais–Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation - Δ u + V ( x ) u = K ( x ) | u | 2 * - 2 u + g ( x , u ) , u W 1 , 2 ( 𝐑 N ) , where N 4 ; V , K , g are periodic in x j for 1 j N and 0 is in a gap of the spectrum of - Δ + V ; K > 0 . If 0 < g ( x , u ) u c | u | 2 * for an appropriate constant c , we show that this equation has a nontrivial solution.

Weak Linking Theorems and Schrödinger Equations with Critical Sobolev Exponent

Martin Schechter, Wenming Zou (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais–Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation - Δ u + V ( x ) u = K ( x ) | u | 2 * - 2 u + g ( x , u ) , u W 1 , 2 ( 𝐑 N ) , where N ≥ 4; V,K,g are periodic in xj for 1 ≤ j ≤ N and 0 is in a gap of the spectrum of -Δ + V; K>0. If 0 < g ( x , u ) u c | u | 2 * for an appropriate constant c, we show that this equation has a nontrivial solution.

Weak periodic solutions of the boundary value problem for nonlinear heat equation

Věnceslava Šťastnová, Svatopluk Fučík (1979)

Aplikace matematiky

The paper deals with the existence of periodic solutions of the boundary value problem for nonlinear heat equation, where various types of nonlinearities are considered. The proofs are based on the investigation of Liapunov-Schmidt bifurcation system via Leray-Schauder degree theory.

Weak Solutions for a Fourth Order Degenerate Parabolic Equation

Changchun Liu, Jinyong Guo (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

We consider an initial-boundary value problem for a fourth order degenerate parabolic equation. Under some assumptions on the initial value, we establish the existence of weak solutions by the discrete-time method. The asymptotic behavior and the finite speed of propagation of perturbations of solutions are also discussed.

Weak uniqueness and partial regularity for the composite membrane problem

Sagun Chanillo, Carlos E. Kenig (2008)

Journal of the European Mathematical Society

We study the composite membrane problem in all dimensions. We prove that the minimizing solutions exhibit a weak uniqueness property which under certain conditions can be turned into a full uniqueness result. Next we study the partial regularity of the solutions to the Euler–Lagrange equation associated to the composite problem and also the regularity of the free boundary for solutions to the Euler–Lagrange equations.

Weakly nonlinear stochastic CGL equations

Sergei B. Kuksin (2013)

Annales de l'I.H.P. Probabilités et statistiques

We consider the linear Schrödinger equation under periodic boundary conditions, driven by a random force and damped by a quasilinear damping: d d t u + i - Δ + V ( x ) u = ν Δ u - γ R | u | 2 p u - i γ I | u | 2 q u + ν η ( t , x ) . ( * ) The force η is white in time and smooth in x ; the potential V ( x ) is typical. We are concerned with the limiting, as ν 0 , behaviour of solutions on long time-intervals 0 t ν - 1 T , and with behaviour of these solutions under the double limit t and ν 0 . We show that these two limiting behaviours may be described in terms of solutions for thesystem of effective equations for(...

Weakly semibounded boundary problems and sesquilinear forms

Gerd Grubb (1973)

Annales de l'institut Fourier

Let A be a 2 m order differential operator in a hermitian vector bundle E over a compact riemannian manifold Ω with boundary Γ  ; and denote by A B the realization defined by a normal differential boundary condition B ρ u = 0 ( u H 2 m ( E ) , ρ u = Cauchy data). We characterize, by an explicit condition on A and B near Γ , the realizations A B for which there exists an integro-differential sesquilinear form a B ( u , ν ) on H m ( E ) such that ( A u , ν ) = a B ( u , ν ) on D ( A B ) ; moreover we show that these are exactly the realizations satisfying a weak semiboundedness estimate:...

Weak-strong uniqueness for Navier-Stokes/Allen-Cahn system

Radim Hošek, Václav Mácha (2019)

Czechoslovak Mathematical Journal

The coupled Navier-Stokes/Allen-Cahn system is a simple model to describe phase separation in two-component systems interacting with an incompressible fluid flow. We demonstrate the weak-strong uniqueness result for this system in a bounded domain in three spatial dimensions which implies that when a strong solution exists, then a weak solution emanating from the same data coincides with the strong solution on its whole life span. The proof of given assertion relies on a form of a relative entropy...

Currently displaying 1 – 20 of 45

Page 1 Next