Displaying 61 – 80 of 110

Showing per page

Problema di trasporto e equazione di Cauchy per campi vettoriali a variazione limitata

Luigi Ambrosio (2004)

Bollettino dell'Unione Matematica Italiana

In questa conferenza descrivo alcuni recenti sviluppi relativi al problema dell'unicità per l'equazione differenziale ordinaria e per l'equazione di continuità per campi vettoriali debolmente differenziabili. Descrivo infine un'applicazione di questi risultati a un sistema di leggi di conservazione.

Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I : regularity

Andrea C. G. Mennucci (2004)

ESAIM: Control, Optimisation and Calculus of Variations

We formulate an Hamilton-Jacobi partial differential equation H ( x , D u ( x ) ) = 0 on a n dimensional manifold M , with assumptions of convexity of H ( x , · ) and regularity of H (locally in a neighborhood of { H = 0 } in T * M ); we define the “min solution” u , a generalized solution; to this end, we view T * M as a symplectic manifold. The definition of “min solution” is suited to proving regularity results about u ; in particular, we prove in the first part that the closure of the set where u is not regular may be covered by a countable number...

Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I: Regularity

Andrea C.G. Mennucci (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We formulate an Hamilton-Jacobi partial differential equation H( x, D u(x))=0 on a n dimensional manifold M, with assumptions of convexity of H(x, .) and regularity of H (locally in a neighborhood of {H=0} in T*M); we define the “minsol solution” u, a generalized solution; to this end, we view T*M as a symplectic manifold. The definition of “minsol solution” is suited to proving regularity results about u; in particular, we prove in the first part that the closure of the set where...

Regularity properties of the distance functions to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry

Marco Castelpietra, Ludovic Rifford (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Given a continuous viscosity solution of a Dirichlet-type Hamilton-Jacobi equation, we show that the distance function to the conjugate locus which is associated to this problem is locally semiconcave on its domain. It allows us to provide a simple proof of the fact that the distance function to the cut locus associated to this problem is locally Lipschitz on its domain. This result, which was already an improvement of a previous one by Itoh and Tanaka [Trans. Amer. Math. Soc. 353 (2001) 21–40],...

Sharp Domains of Determinacy and Hamilton-Jacobi Equations

Jean-Luc Joly, Guy Métivier, Jeffrey Rauch (2004/2005)

Séminaire Équations aux dérivées partielles

If L ( t , x , t , x ) is a linear hyperbolic system of partial differential operators for which local uniqueness in the Cauchy problem at spacelike hypersurfaces is known, we find nearly optimal domains of determinacy of open sets Ω 0 { t = 0 } . The frozen constant coefficient operators L ( t ̲ , x ̲ , t , x ) determine local convex propagation cones, Γ + ( t ̲ , x ̲ ) . Influence curves are curves whose tangent always lies in these cones. We prove that the set of points Ω which cannot be reached by influence curves beginning in the exterior of Ω 0 is a domain of...

Solutions à ε près de systèmes d’équations aux dérivées partielles non linéaires de type mixte posés sur des ouverts non bornés

Jean-Claude Jolly (2003)

Annales mathématiques Blaise Pascal

La résolution d’un système d’EDP non linéaires, de type mixte et sous contraintes, est étudiée dans des ouverts non bornés. Le cas considéré est celui d’un modèle d’écoulement transsonique avec condition d’entropie. Le problème est ramené à l’annulation d’une fonctionnelle positive pénalisée, dans un cadre hilbertien. Des solutions généralisées à ε près sont obtenues par encadrement de la borne inférieure de la fonctionnelle. Si les contraintes sont omises et sous certaines hypothèses, un algorithme...

Solutions of Analytical Systems of Partial Differential Equations

Trenčevski, K. (1995)

Serdica Mathematical Journal

In this paper are examined some classes of linear and non-linear analytical systems of partial differential equations. Compatibility conditions are found and if they are satisfied, the solutions are given as functional series in a neighborhood of a given point (x = 0).

Currently displaying 61 – 80 of 110