Page 1

Displaying 1 – 12 of 12

Showing per page

Sharp Domains of Determinacy and Hamilton-Jacobi Equations

Jean-Luc Joly, Guy Métivier, Jeffrey Rauch (2004/2005)

Séminaire Équations aux dérivées partielles

If L ( t , x , t , x ) is a linear hyperbolic system of partial differential operators for which local uniqueness in the Cauchy problem at spacelike hypersurfaces is known, we find nearly optimal domains of determinacy of open sets Ω 0 { t = 0 } . The frozen constant coefficient operators L ( t ̲ , x ̲ , t , x ) determine local convex propagation cones, Γ + ( t ̲ , x ̲ ) . Influence curves are curves whose tangent always lies in these cones. We prove that the set of points Ω which cannot be reached by influence curves beginning in the exterior of Ω 0 is a domain of...

Solutions à ε près de systèmes d’équations aux dérivées partielles non linéaires de type mixte posés sur des ouverts non bornés

Jean-Claude Jolly (2003)

Annales mathématiques Blaise Pascal

La résolution d’un système d’EDP non linéaires, de type mixte et sous contraintes, est étudiée dans des ouverts non bornés. Le cas considéré est celui d’un modèle d’écoulement transsonique avec condition d’entropie. Le problème est ramené à l’annulation d’une fonctionnelle positive pénalisée, dans un cadre hilbertien. Des solutions généralisées à ε près sont obtenues par encadrement de la borne inférieure de la fonctionnelle. Si les contraintes sont omises et sous certaines hypothèses, un algorithme...

Solutions of Analytical Systems of Partial Differential Equations

Trenčevski, K. (1995)

Serdica Mathematical Journal

In this paper are examined some classes of linear and non-linear analytical systems of partial differential equations. Compatibility conditions are found and if they are satisfied, the solutions are given as functional series in a neighborhood of a given point (x = 0).

Systèmes hyperboliques et viscosité évanescente

Frédéric Rousset (2002/2003)

Séminaire Bourbaki

Le but de l’exposé est de présenter les résultats obtenus par S. Bianchini et A. Bressan sur le problème de Cauchy pour des perturbations visqueuses t u ε + x f ( u ε ) = ε x x u ε de systèmes strictement hyperboliques t u + x f ( u ) = 0 en une dimension d’espace. Ils ont en particulier montré l’existence globale ( t 0 ), l’unicité et la stabilité des solutions et justifié la convergence quand ε tend vers zéro pour des données initiales à petite variation totale. Leur analyse montre aussi que les solutions du système hyperbolique ainsi obtenues...

Systems of Clairaut type

Shyuichi Izumiya (1993)

Colloquium Mathematicae

A characterization of systems of first order differential equations with (classical) complete solutions is given. Systems with (classical) complete solutions that consist of hyperplanes are also characterized.

Currently displaying 1 – 12 of 12

Page 1