Page 1

Displaying 1 – 8 of 8

Showing per page

A new LMI-based robust finite-time sliding mode control strategy for a class of uncertain nonlinear systems

Saleh Mobayen, Fairouz Tchier (2015)

Kybernetika

This paper presents a novel sliding mode controller for a class of uncertain nonlinear systems. Based on Lyapunov stability theorem and linear matrix inequality technique, a sufficient condition is derived to guarantee the global asymptotical stability of the error dynamics and a linear sliding surface is existed depending on state errors. A new reaching control law is designed to satisfy the presence of the sliding mode around the linear surface in the finite time, and its parameters are obtained...

A note on the regularity of solutions of Hamilton-Jacobi equations with superlinear growth in the gradient variable

Pierre Cardaliaguet (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We investigate the regularity of solutions of first order Hamilton-Jacobi equation with super linear growth in the gradient variable. We show that the solutions are locally Hölder continuous with Hölder exponent depending only on the growth of the hamiltonian. The proof relies on a reverse Hölder inequality.

A note on the regularity of solutions of Hamilton-Jacobi equations with superlinear growth in the gradient variable

Pierre Cardaliaguet (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We investigate the regularity of solutions of first order Hamilton-Jacobi equation with super linear growth in the gradient variable. We show that the solutions are locally Hölder continuous with Hölder exponent depending only on the growth of the Hamiltonian. The proof relies on a reverse Hölder inequality.

Adjoint methods for obstacle problems and weakly coupled systems of PDE

Filippo Cagnetti, Diogo Gomes, Hung Vinh Tran (2013)

ESAIM: Control, Optimisation and Calculus of Variations

The adjoint method, recently introduced by Evans, is used to study obstacle problems, weakly coupled systems, cell problems for weakly coupled systems of Hamilton − Jacobi equations, and weakly coupled systems of obstacle type. In particular, new results about the speed of convergence of some approximation procedures are derived.

Currently displaying 1 – 8 of 8

Page 1