The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 3 of 3

Showing per page

Levi-equation in higher dimensions

Zbginiew Slodkowski, Giuseppe Tomassini (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We announce some results concerning the Dirichlet problem for the Levi-equation in C n . We consider for the sake of simplicity the case n = 3 .

Local semiconvexity of Kantorovich potentials on non-compact manifolds

Alessio Figalli, Nicola Gigli (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We prove that any Kantorovich potential for the cost function c = d2/2 on a Riemannian manifold (M, g) is locally semiconvex in the “region of interest”, without any compactness assumption on M, nor any assumption on its curvature. Such a region of interest is of full μ-measure as soon as the starting measure μ does not charge n – 1-dimensional rectifiable sets.

Local semiconvexity of Kantorovich potentials on non-compact manifolds*

Alessio Figalli, Nicola Gigli (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We prove that any Kantorovich potential for the cost function c = d2/2 on a Riemannian manifold (M, g) is locally semiconvex in the “region of interest”, without any compactness assumption on M, nor any assumption on its curvature. Such a region of interest is of full μ-measure as soon as the starting measure μ does not charge n – 1-dimensional rectifiable sets.

Currently displaying 1 – 3 of 3

Page 1