Displaying 501 – 520 of 693

Showing per page

On the optimal control of coefficients in elliptic problems. Application to the optimization of the head slider

Ionel Ciuperca, Mohamed El Alaoui Talibi, Mohammed Jai (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an optimal control problem for a class of non-linear elliptic equations. A result of existence and uniqueness of the state equation is proven under weaker hypotheses than in the literature. We also prove the existence of an optimal control. Applications to some lubrication problems and numerical results are given.

On the optimal control of coefficients in elliptic problems. Application to the optimization of the head slider

Ionel Ciuperca, Mohamed El Alaoui Talibi, Mohammed Jai (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an optimal control problem for a class of non-linear elliptic equations. A result of existence and uniqueness of the state equation is proven under weaker hypotheses than in the literature. We also prove the existence of an optimal control. Applications to some lubrication problems and numerical results are given.

On the oscillation of forced second order mixed-nonlinear elliptic equations

Zhiting Xu (2010)

Annales Polonici Mathematici

Oscillation theorems are established for forced second order mixed-nonlinear elliptic differential equations ⎧ d i v ( A ( x ) | | y | | p - 1 y ) + b ( x ) , | | y | | p - 1 y + C ( x , y ) = e ( x ) , ⎨ ⎩ C ( x , y ) = c ( x ) | y | p - 1 y + i = 1 m c i ( x ) | y | p i - 1 y under quite general conditions. These results are extensions of the recent results of Sun and Wong, [J. Math. Anal. Appl. 334 (2007)] and Zheng, Wang and Han [Appl. Math. Lett. 22 (2009)] for forced second order ordinary differential equations with...

On the principal eigencurve of the p-Laplacian related to the Sobolev trace embedding

Abdelouahed El Khalil, Mohammed Ouanan (2005)

Applicationes Mathematicae

We prove that for any λ ∈ ℝ, there is an increasing sequence of eigenvalues μₙ(λ) for the nonlinear boundary value problem ⎧ Δ u = | u | p - 2 u in Ω, ⎨ ⎩ | u | p - 2 u / ν = λ ϱ ( x ) | u | p - 2 u + μ | u | p - 2 u on crtial ∂Ω and we show that the first one μ₁(λ) is simple and isolated; we also prove some results about variations of the density ϱ and the continuity with respect to the parameter λ.

On the principal eigenvalue of elliptic operators in N and applications

Henry Berestycki, Luca Rossi (2006)

Journal of the European Mathematical Society

Two generalizations of the notion of principal eigenvalue for elliptic operators in N are examined in this paper. We prove several results comparing these two eigenvalues in various settings: general operators in dimension one; self-adjoint operators; and “limit periodic” operators. These results apply to questions of existence and uniqueness for some semilinear problems in the whole space. We also indicate several outstanding open problems and formulate some conjectures.

Currently displaying 501 – 520 of 693