A 3G-Theorem for Jordan Domains in ℝ²
We prove a new 3G-Theorem for the Laplace Green function G on an arbitrary Jordan domain D in ℝ². This theorem extends the recent one proved on a Dini-smooth Jordan domain.
We prove a new 3G-Theorem for the Laplace Green function G on an arbitrary Jordan domain D in ℝ². This theorem extends the recent one proved on a Dini-smooth Jordan domain.
We deal with the problem ⎧ -Δu = f(x,u) + λg(x,u), in Ω, ⎨ () ⎩ where Ω ⊂ ℝⁿ is a bounded domain, λ ∈ ℝ, and f,g: Ω×ℝ → ℝ are two Carathéodory functions with f(x,0) = g(x,0) = 0. Under suitable assumptions, we prove that there exists λ* > 0 such that, for each λ ∈ (0,λ*), problem () admits a non-zero, non-negative strong solution such that for all p ≥ 2. Moreover, the function is negative and decreasing in ]0,λ*[, where is the energy functional related to ().
We study the noncompact solution sequences to the mean field equation for arbitrarily signed vortices and observe the quantization of the mass of concentration, using the rescaling argument.
Towards a constructive method to determine an L∞-conductivity from the corresponding Dirichlet to Neumann operator, we establish a Fredholm integral equation of the second kind at the boundary of a two dimensional body. We show that this equation depends directly on the measured data and has always a unique solution. This way the geometric optics solutions for the L∞-conductivity problem can be determined in a stable manner at the boundary and outside of the body.
Some application driven fast algorithms developed by the author and his collaborators for elliptic partial differential equations are briefly reviewed here. Subsequent use of the ideas behind development of these algorithms for further development of other algorithms some of which are currently in progress is briefly mentioned. Serial and parallel implementation of these algorithms and their applications to some pure and applied problems are also briefly reviewed.
A new finite element, which is continuously differentiable, but only piecewise quadratic polynomials on a type of uniform triangulations, is introduced. We construct a local basis which does not involve nodal values nor derivatives. Different from the traditional finite elements, we have to construct a special, averaging operator which is stable and preserves quadratic polynomials. We show the optimal order of approximation of the finite element in interpolation, and in solving the biharmonic...
For a class of degenerate pseudodifferential operators, local parametrices are constructed. This is done in the framework of a pseudodifferential calculus upon adding conditions of trace and potential type, respectively, along the boundary on which the operators degenerate.
In this paper, we employ the reduced basis method as a surrogate model for the solution of linear-quadratic optimal control problems governed by parametrized elliptic partial differential equations. We present a posteriori error estimation and dual procedures that provide rigorous bounds for the error in several quantities of interest: the optimal control, the cost functional, and general linear output functionals of the control, state, and adjoint variables. We show that, based on the assumption...
We give a characterization of constant coefficients elliptic operators in terms of estimates of their iterations on smooth functions.