Damped wave equations and the heat equation
This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu, F. Murat,...
Let be a Brownian motion valued in the complex projective space . Using unitary spherical harmonics of homogeneous degree zero, we derive the densities of and of , and express them through Jacobi polynomials in the simplices of and respectively. More generally, the distribution of may be derived using the decomposition of the unitary spherical harmonics under the action of the unitary group yet computations become tedious. We also revisit the approach initiated in [13] and based on...