The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We characterize all subsets of such that
for every bounded parabolic function on . The closely related problem of representing functions as sums of Weierstrass kernels corresponding to points of is also considered. The results provide a parabolic counterpart to results for classical harmonic functions in a ball, see References. As a by-product the question of representability of probability continuous distributions as sums of multiples of normal distributions is investigated.
We prove a characterisation of sets with finite perimeter and functions in terms of the short time behaviour of the heat semigroup in . For sets with smooth boundary a more precise result is shown.
The existence of solutions to an initial-boundary value problem to the heat equation in a bounded domain in ℝ³ is proved. The domain contains an axis and the existence is proved in weighted anisotropic Sobolev spaces with weight equal to a negative power of the distance to the axis. Therefore we prove the existence of solutions which vanish sufficiently fast when approaching the axis. We restrict our considerations to the Dirichlet problem, but the Neumann and the third boundary value problems can...
A general class of nonconforming meshes has been recently studied for stationary anisotropic heterogeneous diffusion problems, see Eymard et al. (IMA J. Numer. Anal. 30 (2010), 1009–1043). Thanks to the basic ideas developed in the stated reference for stationary problems, we derive a new discretization scheme in order to approximate the nonstationary heat problem. The unknowns of this scheme are the values at the centre of the control volumes, at some internal interfaces, and at the mesh points...
We address three null controllability problems related to the heat equation. First we show that the heat equation with a rapidly oscillating density is uniformly null controllable as the period of the density tends to zero. We also prove that the same result holds for the finite-difference semi-discretization in space of the constant coefficient heat equation as the step size tends to zero. Finally, we prove that the null controllability of the constant coefficient heat equation can be obtained...
We are interested in the discretization of the heat equation with a diffusion coefficient depending on the space and time variables. The discretization relies on a spectral element method with respect to the space variables and Euler's implicit scheme with respect to the time variable. A detailed numerical analysis leads to optimal a priori error estimates.
We establish L2 and Lp bounds for a class of square functions which arises in the study of singular integrals and boundary value problems in non-smooth domains. As an application, we present a simplified treatment of a class of parabolic smoothing operators which includes the caloric single layer potential on the boundary of certain minimally smooth, non-cylindrical domains.
Currently displaying 1 –
20 of
30