Sets of determination for parabolic functions on a half-space
We characterize all subsets of such that for every bounded parabolic function on . The closely related problem of representing functions as sums of Weierstrass kernels corresponding to points of is also considered. The results provide a parabolic counterpart to results for classical harmonic functions in a ball, see References. As a by-product the question of representability of probability continuous distributions as sums of multiples of normal distributions is investigated.