Équations d'évolution à coefficients singuliers
We prove global pointwise estimates for the Green function of a parabolic operator with potential in the parabolic Kato class on a cylindrical domain Ω. We apply these estimates to obtain a new and shorter proof of the Harnack inequality [16], and to study the boundary behavior of nonnegative solutions.
In this work we study the problem in , in , on , in , is a bounded regular domain such that , , , , and are positive functions such...
We establish the existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions. The energies associated to these evolution equations are quadratic forms. Our approach is based on application of the Schaefer fixed-point theorem combined with the continuity method.
The paper is devoted to the study of the existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces involving anti-periodic boundary conditions. Our approach in this study relies on the theory of monotone and maximal monotone operators combined with the Schaefer fixed-point theorem and the monotonicity method. We apply our abstract results in order to solve a diffusion equation of Kirchhoff type involving the Dirichlet -Laplace operator.