Behaviour of solutions to as p → +∞
An abstract semilinear parabolic equation in a Banach space X is considered. Under general assumptions on nonlinearity this problem is shown to generate a bounded dissipative semigroup on . This semigroup possesses an -global attractor that is closed, bounded, invariant in , and attracts bounded subsets of in a ’weaker’ topology of an auxiliary Banach space Z. The abstract approach is finally applied to the scalar parabolic equation in Rⁿ and to the partly dissipative system.
A class of nonlinear viscous transport equations describing aggregation phenomena in biology is considered. General conditions on an interaction potential are obtained which lead either to the existence or to the nonexistence of global-in-time solutions.
We give necessary and sufficient conditions for the formal power series solutions to the initial value problem for the Burgers equation to be convergent or Borel summable.