New schemes for a two-dimensional inverse problem with temperature overspecification.
In this paper we test the feasibility of coupling two heterogeneous mathematical modeling integrated within two different codes residing on distant sites. A prototype is developed using Schwarz type domain decomposition as the mathematical tool for coupling. The computing technology for coupling uses a CORBA environment to implement a distributed client-server programming model. Domain decomposition methods are well suited to reducing complex physical phenomena into a sequence of parallel subproblems...
In this paper we test the feasibility of coupling two heterogeneous mathematical modeling integrated within two different codes residing on distant sites. A prototype is developed using Schwarz type domain decomposition as the mathematical tool for coupling. The computing technology for coupling uses a CORBA environment to implement a distributed client-server programming model. Domain decomposition methods are well suited to reducing complex physical phenomena into a sequence of parallel subproblems...
It is proved that the solution to the initial value problem , u(0,x) = 1/(1+x²), does not belong to the Gevrey class in time for 0 ≤ s < 1. The proof is based on an estimation of a double sum of products of binomial coefficients.
We study existence and approximation of non-negative solutions of partial differential equations of the typewhere is a symmetric matrix-valued function of the spatial variable satisfying a uniform ellipticity condition, is a suitable non decreasing function, is a convex function. Introducing the energy functional , where is a convex function linked to by , we show that is the “gradient flow” of with respect to the 2-Wasserstein distance between probability measures on the space...
We study existence and approximation of non-negative solutions of partial differential equations of the type where A is a symmetric matrix-valued function of the spatial variable satisfying a uniform ellipticity condition, is a suitable non decreasing function, is a convex function. Introducing the energy functional , where F is a convex function linked to f by , we show that u is the “gradient flow” of ϕ with respect to the 2-Wasserstein distance between probability measures on the space...
We consider an abstract formulation for a class of parabolic quasi-variational inequalities or quasi-linear PDEs, which are generated by subdifferentials of convex functions with various nonlocal constraints depending on the unknown functions. In this paper we specify a class of convex functions on a real Hilbert space H, with parameters 0 ≤ t ≤ T and v in a set of functions from [-δ₀,T], 0 < δ₀ < ∞, into H, in order to formulate an evolution equation of the form , 0 < t < T, in H. Our...
The purpose of this paper is to study nonnegative solutions u of the nonlinear evolution equations∂u/∂t = Δφ(u), x ∈ Rn, 0 < t < T ≤ +∞ (1.1)Here the nonlinearity φ is assumed to be continuous, increasing with φ(0) = 0. This equation arises in various physical problems, and specializing φ leads to models for nonlinear filtrations, or for the gas flow in a porous medium. For a recent survey in these equations see [9].The main object of this work is to study the initial value problem...
The purpose of this work is to study the class of non-negative continuous weak solutions of the non-linear evolution equation∂u/∂t = ∆φ(u), x ∈ Rn, 0 < t < T ≤ +∞.
This paper deals with the construction of numerical solution of the Black-Scholes (B-S) type equation modeling option pricing with variable yield discrete dividend payment at time . Firstly the shifted delta generalized function appearing in the B-S equation is approximated by an appropriate sequence of nice ordinary functions. Then a semidiscretization technique applied on the underlying asset is used to construct a numerical solution. The limit of this numerical solution is independent of the...