-convergence of finite element Galerkin approximations for parabolic problems
We propose and analyze a semi Lagrangian method for the convection-diffusion equation. Error estimates for both semi and fully discrete finite element approximations are obtained for convection dominated flows. The estimates are posed in terms of the projections constructed in [Chrysafinos and Walkington, SIAM J. Numer. Anal. 43 (2006) 2478–2499; Chrysafinos and Walkington, SIAM J. Numer. Anal. 44 (2006) 349–366] and the dependence of various constants upon the diffusion parameter is ...
We study the large time asymptotic behavior of solutions of the doubly degenerate parabolic equation with an initial condition . Here the exponents , and satisfy , and .
% We study the large time behaviour of entropy solutions of the Cauchy problem for a possibly degenerate nonlinear diffusion equation with a nonlinear convection term. The initial function is assumed to have bounded total variation. We prove the convergence of the solution to the entropy solution of a Riemann problem for the corresponding first order conservation law.
This note is devoted to the study of the long time behaviour of solutions to the heat and the porous medium equations in the presence of an external source term, using entropy methods and self-similar variables. Intermediate asymptotics and convergence results are shown using interpolation inequalities, Gagliardo-Nirenberg-Sobolev inequalities and Csiszár-Kullback type estimates.
Error estimates in L∞(0,T;L2(Ω)), L∞(0,T;L2(Ω)2), L∞(0,T;L∞(Ω)), L∞(0,T;L∞(Ω)2), Ω in , are derived for a mixed finite element method for the initial-boundary value problem for integro-differential equation based on the Raviart-Thomas space Vh x Wh ⊂ H(div;Ω) x L2(Ω). Optimal order estimates are obtained for the approximation of u,ut in L∞(0,T;L2(Ω)) and the associated velocity p in L∞(0,T;L2(Ω)2), divp in L∞(0,T;L2(Ω)). Quasi-optimal order estimates are obtained for the approximation...