Existence of pseudo almost automorphic solutions for the heat equation with -pseudo almost automorphic coefficients.
We study the problem ∂b(x,u)/∂t - div(a(x,t,u,Du)) + H(x,t,u,Du) = μ in Q = Ω×(0,T), in Ω, u = 0 in ∂Ω × (0,T). The main contribution of our work is to prove the existence of a renormalized solution without the sign condition or the coercivity condition on H(x,t,u,Du). The critical growth condition on H is only with respect to Du and not with respect to u. The datum μ is assumed to be in and b(x,u₀) ∈ L¹(Ω).
We establish the existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions. The energies associated to these evolution equations are quadratic forms. Our approach is based on application of the Schaefer fixed-point theorem combined with the continuity method.
We prove existence of weak solutions to doubly degenerate diffusion equations by Faedo-Galerkin approximation for general domains and general nonlinearities. More precisely, we discuss the equation in an abstract setting, which allows to choose function spaces corresponding to bounded or unbounded domains with Dirichlet or Neumann boundary conditions. The function can be an inhomogeneity or a nonlinearity involving terms of the form or . In the appendix, an introduction to weak differentiability...
We consider the large time behavior of a solution of a parabolic type equation involving a nonlocal term depending on the unknown function. This equation is proposed as a mathematical model of carbon dioxide transport in concrete carbonation process, and we proved the existence, uniqueness and large time behavior of a solution of this model. In this paper, we derive the exponential decay estimate of the solution of this model under restricted boundary data and initial data.