Évolution d'une onde simple pour des équations non-linéaires générales
We develolp a new method to solve an evolution equation in a non-cylindrical domain, by reduction to an abstract evolution equation..
We study a higher order parabolic partial differential equation that arises in the context of condensed matter physics. It is a fourth order semilinear equation which nonlinearity is the determinant of the Hessian matrix of the solution. We consider this model in a bounded domain of the real plane and study its stationary solutions both when the geometry of this domain is arbitrary and when it is the unit ball and the solution is radially symmetric. We also consider the initial-boundary value problem...
Pour localiser la solution d’un système de diffusion-réaction, il suffit de construire une famille de convexes , invariante par rapport au champ de vecteurs associé à ce système; la solution est alors incluse dans à l’instant dès qu’elle est contenue dans à l’instant zéro. Les fonctions d’appui associées à de telles familles de convexes sont solutions d’un système différentiel, mais celui-ci peut également engendrer des familles non invariantes.
In this paper we study the convergence properties of the Galerkin approximations to a nonlinear, nonautonomous evolution inclusion and use them to determine the structural properties of the solution set and establish the existence of periodic solutions. An example of a multivalued parabolic p.d.ei̇s also worked out in detail.
We prove the existence of a compact connected global attractor for a class of abstract semilinear parabolic equations with infinite delay.
Si prova resistenza globale della soluzione di una equazione di Riccati collegata alla sintesi di un problema di controllo ottimale. Il problema considerato rappresenta la versione astratta di alcuni problemi governati da equazioni paraboliche con il controllo sulla frontiera.