Displaying 21 – 40 of 49

Showing per page

On higher-order semilinear parabolic equations with measures as initial data

Victor Galaktionov (2004)

Journal of the European Mathematical Society

We consider 2 m th-order ( m 2 ) semilinear parabolic equations u t = ( Δ ) m u ± | u | p 1 u in N × + ( p > 1 ) , with Dirac’s mass δ ( x ) as the initial function. We show that for p < p 0 = 1 + 2 m / N , the Cauchy problem admits...

On the asymptotic behavior for convection-diffusion equations associated to higher order elliptic operators in divergence form.

Mokhtar Kirane, Mahmoud Qafsaoui (2002)

Revista Matemática Complutense

We consider the linear convection-diffusion equation associated to higher order elliptic operators⎧  ut + Ltu = a∇u   on Rnx(0,∞)⎩  u(0) = u0 ∈ L1(Rn),where a is a constant vector in Rn, m ∈ N*, n ≥ 1 and L0 belongs to a class of higher order elliptic operators in divergence form associated to non-smooth bounded measurable coefficients on Rn. The aim of this paper is to study the asymptotic behavior, in Lp (1 ≤ p ≤ ∞), of the derivatives Dγu(t) of the solution of the convection-diffusion equation...

Optimal regularity for one-dimensional porous medium flow.

Donald G. Aronson, Luis A. Caffarelli (1986)

Revista Matemática Iberoamericana

We give a new proof of the Lipschitz continuity with respect to t of the pressure in a one dimensional porous medium flow. As is shown by the Barenblatt solution, this is the optimal t-regularity for the pressure. Our proof is based on the existence and properties of a certain selfsimilar solution.

Currently displaying 21 – 40 of 49