Page 1

Displaying 1 – 2 of 2

Showing per page

Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations

Tuomo Kuusi (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this work we prove both local and global Harnack estimates for weak supersolutions to second order nonlinear degenerate parabolic partial differential equations in divergence form. We reduce the proof to an analysis of so-called hot and cold alternatives, and use the expansion of positivity together with a parabolic type of covering argument. Our proof uses only the properties of weak supersolutions. In particular, no comparison to weak solutions is needed.

Homogenization of monotone parabolic problems with several temporal scales

Jens Persson (2012)

Applications of Mathematics

In this paper we homogenize monotone parabolic problems with two spatial scales and any number of temporal scales. Under the assumption that the spatial and temporal scales are well-separated in the sense explained in the paper, we show that there is an H-limit defined by at most four distinct sets of local problems corresponding to slow temporal oscillations, slow resonant spatial and temporal oscillations (the “slow” self-similar case), rapid temporal oscillations, and rapid resonant spatial and...

Currently displaying 1 – 2 of 2

Page 1