Observations on Blow Up and Dead Cores for Nonlinear Parabolic Equations.
We deal with a class of Penrose-Fife type phase field models for phase transitions, where the phase dynamics is ruled by a Cahn-Hilliard type equation. Suitable assumptions on the behaviour of the heat flux as the absolute temperature tends to zero and to are considered. An existence result is obtained by a double approximation procedure and compactness methods. Moreover, uniqueness and regularity results are proved as well.
The paper is concerned with the study of a parabolic initial-boundary value problem with nonlinear Newton boundary condition considered in a two-dimensional domain. The goal is to prove the existence and uniqueness of a weak solution to the problem in the case when the nonlinearity in the Newton boundary condition does not satisfy any monotonicity condition and to analyze the finite element approximation.
We consider the parabolic equation (P) , (t,x) ∈ ℝ₊ × ℝⁿ, and the corresponding semiflow π in the phase space H¹. We give conditions on the nonlinearity F(x,u), ensuring that all bounded sets of H¹ are π-admissible in the sense of Rybakowski. If F(x,u) is asymptotically linear, under appropriate non-resonance conditions, we use Conley’s index theory to prove the existence of nontrivial equilibria of (P) and of heteroclinic trajectories joining some of these equilibria. The results obtained extend...
We obtain some sufficient conditions under which solutions to a nonlinear parabolic equation of second order with nonlinear boundary conditions tend to zero or blow up in a finite time. We also give the asymptotic behavior of solutions which tend to zero as . Finally, we obtain the asymptotic behavior near the blow-up time of certain blow-up solutions and describe their blow-up set.
We investigate stationary solutions and asymptotic behaviour of solutions of two boundary value problems for semilinear parabolic equations. These equations involve both blow up and damping terms and they were studied by several authors. Our main goal is to fill some gaps in these studies.