Previous Page 4

Displaying 61 – 67 of 67

Showing per page

Asymptotic behaviour for a phase-field model with hysteresis in one-dimensional thermo-visco-plasticity

Olaf Klein (2004)

Applications of Mathematics

The asymptotic behaviour for t of the solutions to a one-dimensional model for thermo-visco-plastic behaviour is investigated in this paper. The model consists of a coupled system of nonlinear partial differential equations, representing the equation of motion, the balance of the internal energy, and a phase evolution equation, determining the evolution of a phase variable. The phase evolution equation can be used to deal with relaxation processes. Rate-independent hysteresis effects in the strain-stress...

Asymptotic self-similar blow-up for a model of aggregation

Ignacio Guerra (2004)

Banach Center Publications

In this article we consider a system of equations that describes a class of mass-conserving aggregation phenomena, including gravitational collapse and bacterial chemotaxis. In spatial dimensions strictly larger than two, and under the assumptions of radial symmetry, it is known that this system has at least two stable mechanisms of singularity formation (see e.g. M. P. Brenner et al. 1999, Nonlinearity 12, 1071-1098); one type is self-similar, and may be viewed as a trade-off between diffusion...

Currently displaying 61 – 67 of 67

Previous Page 4