Decacy of solutions of the wave equation with a local nonlinear dissipation.
We consider an initial boundary value problem for the equation . We first prove local and global existence results under suitable conditions on f and g. Then we show that weak solutions decay either algebraically or exponentially depending on the rate of growth of g. This result improves and includes earlier decay results established by the authors.
In this paper we study the asymptotic behavior of solutions to the damped, nonlinear vibration equation with self-interaction which is known as degenerate if , and non-degenerate if . We would like to point out that, to the author’s knowledge, exponential decay for this type of equations has been studied just for the special cases of . Our aim is to extend the validity of previous results in [5] to both to the degenerate and non-degenerate cases of . We extend our results to equations with...
In this note we consider a strictly convex domain of dimension with smooth boundary and we describe the dispersive and Strichartz estimates for the wave equation with the Dirichlet boundary condition. We obtain counterexamples to the optimal Strichartz estimates of the flat case; we also discuss the some results concerning the dispersive estimates.