Page 1

Displaying 1 – 4 of 4

Showing per page

Mathematical and physical aspects of the initial value problem for a nonlocal model of heat propagation with finite speed

Jerzy A. Gawinecki, Agnieszka Gawinecka, Jarosław Łazuka, J. Rafa (2013)

Applicationes Mathematicae

Theories of heat predicting a finite speed of propagation of thermal signals have come into existence during the last 50 years. It is worth emphasizing that in contrast to the classical heat theory, these nonclassical theories involve a hyperbolic type heat equation and are based on experiments exhibiting the actual occurrence of wave-type heat transport (so called second sound). This paper presents a new system of equations describing a nonlocal model of heat propagation with finite speed in the...

Monotone (A,B) entropy stable numerical scheme for Scalar Conservation Laws with discontinuous flux

Adimurthi, Rajib Dutta, G. D. Veerappa Gowda, Jérôme Jaffré (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

For scalar conservation laws in one space dimension with a flux function discontinuous in space, there exist infinitely many classes of solutions which are L1 contractive. Each class is characterized by a connection (A,B) which determines the interface entropy. For solutions corresponding to a connection (A,B), there exists convergent numerical schemes based on Godunov or Engquist−Osher schemes. The natural question is how to obtain schemes, corresponding to computationally less expensive monotone...

Currently displaying 1 – 4 of 4

Page 1