Semilinear geometric optics for generalized solutions.
We discuss the definitions of singular solutions (in the form of integral identities) to systems of conservation laws such as shocks, δ-, δ’-, and -shocks (n = 2,3,...). Using these definitions, the Rankine-Hugoniot conditions for δ- and δ’-shocks are derived. The weak asymptotics method for the solution of the Cauchy problems admitting δ- and δ’-shocks is briefly described. The algebraic aspects of such singular solutions are studied. Namely, explicit formulas for flux-functions of singular solutions...
In this paper a mathematical model of a fluid flow in a tube with a valve and a pump is solved. The function of the valve is described in more detail than in [3], thus making the model more complete.
Soit , , , et les variables usuelles qui décrivent l’état d’un fluide en coordonnées eulériennes. Le domaine physique occupé par le fluide est a priori tout entier, mais peut être nul en dehors d’un compact . On choisit l’équation d’état d’un gaz parfait, , où est une constante. Le cas est celui du gaz mono-atomique.Dans la limite , les collisions sont rares et on est tenté d’approcher le mouvement des particules par un mouvement rectiligne uniforme : le champ de vitesse obéit alors...
We consider hyperbolic systems with time dependent coefficients and size or . We give some sufficient conditions in order the Cauchy Problem to be well-posed in and in Gevrey spaces.