Global infinite energy solutions of the critical semilinear wave equation.
Previous Page 2
P. Germain (2008)
Revista Matemática Iberoamericana
J. Solà-Morales (1986)
Mathematische Annalen
Harmut Pecher (1990)
Manuscripta mathematica
Vladimir Georgiev (1990)
Mathematische Zeitschrift
Sun, Fuqin, Wang, Mingxin (2006)
Journal of Inequalities and Applications [electronic only]
Gao, Hongjun, Ma, To Fu (1999)
Electronic Journal of Qualitative Theory of Differential Equations [electronic only]
Ebin, David G. (1996)
Electronic Research Announcements of the American Mathematical Society [electronic only]
Jerzy August Gawinecki (1995)
Fumihiko Hirosawa (1998)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Manfrin, R. (2002)
Portugaliae Mathematica. Nova Série
Paul Godin (1994)
Mathematische Annalen
Thierry Gallay, Romain Joly (2009)
Annales scientifiques de l'École Normale Supérieure
We consider the damped wave equation on the whole real line, where is a bistable potential. This equation has travelling front solutions of the form which describe a moving interface between two different steady states of the system, one of which being the global minimum of . We show that, if the initial data are sufficiently close to the profile of a front for large , the solution of the damped wave equation converges uniformly on to a travelling front as . The proof of this global stability...
Yi Zhou (1999)
Annales de l'I.H.P. Analyse non linéaire
A. Freiere (1996)
Manuscripta mathematica
Houssem Eddine Khochemane, Sara Labidi, Sami Loucif, Abdelhak Djebabla (2025)
Mathematica Bohemica
We consider a one-dimensional porous-elastic system with porous-viscosity and a distributed delay of neutral type. First, we prove the global existence and uniqueness of the solution by using the Faedo-Galerkin approximations along with some energy estimates. Then, based on the energy method with some appropriate assumptions on the kernel of neutral delay term, we construct a suitable Lyapunov functional and we prove that, despite of the destructive nature of delays in general, the damping mechanism...
Fonseca, Germán E. (2000)
Revista Colombiana de Matemáticas
Michael Struwe (1988)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Previous Page 2