Quasilinear hyperbolic equations with hysteresis
Hysteresis operators are illustrated, and a weak formulation is studied for an initial- and boundary-value problem associated to the equation ; here is a (possibly discontinuous) hysteresis operator, is a second order elliptic operator, is a known function. Problems of this sort arise in plasticity, ferromagnetism, ferroelectricity, and so on. In particular an existence result is outlined.
Existence of quasi-periodic solutions with two frequencies of completely resonant, periodically forced, nonlinear wave equations with periodic spatial boundary conditions is established. We consider both the cases the forcing frequency is (Case A) a rational number and (Case B) an irrational number.
In this paper, we consider the following initial-boundary value problem where is a bounded domain in with smooth boundary , is an elliptic operator, is a positive parameter, is a positive, increasing, convex function for , and with . Under some assumptions, we show that the solution of the above problem quenches in a finite time and its quenching time goes to that of the solution of the following differential equation as goes to zero. We also show that the above result remains...