Null form estimates for symbols and local existence for a quasilinear dirichlet-wave equation
We prove almost optimal local well-posedness for the coupled Dirac–Klein–Gordon (DKG) system of equations in dimensions. The proof relies on the null structure of the system, combined with bilinear spacetime estimates of Klainerman–Machedon type. It has been known for some time that the Klein–Gordon part of the system has a null structure; here we uncover an additional null structure in the Dirac equation, which cannot be seen directly, but appears after a duality argument.