Eigenfunctions and Nodal Sets
We study stationary solutions of the damped wave equation on a compact and smooth Riemannian manifold without boundary. In the high frequency limit, we prove that a sequence of -damped stationary solutions cannot be completely concentrated in small neighborhoods of a small fixed hyperbolic subset made of -damped trajectories of the geodesic flow.The article also includes an appendix (by S. Nonnenmacher and the author) where we establish the existence of an inverse logarithmic strip without eigenvalues...
Asymptotics with sharp remainder estimates are recovered for number of eigenvalues of the generalized Maxwell problem and for related Laplacians which are similar to Neumann Laplacian. We consider domains with ultra-thin cusps (with ) width ; ) and recover eigenvalue asymptotics with sharp remainder estimates.
We consider the Pauli operator selfadjoint in , . Here , , are the Pauli matrices, is the magnetic potential, is the coupling constant, and is the electric potential which decays at infinity. We suppose that the magnetic field generated by satisfies some regularity conditions; in particular, its norm is lower-bounded by a positive constant, and, in the case , its direction is constant. We investigate the asymptotic behaviour as of the number of the eigenvalues of smaller than...
In this work we extend a previous work about the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint differential operators with small multiplicative random perturbations, by treating the case of operators on compact manifolds