Displaying 21 – 40 of 55

Showing per page

Positive solutions of critical quasilinear elliptic equations in R N

Paul A. Binding, Pavel Drábek, Yin Xi Huang (1999)

Mathematica Bohemica

We consider the existence of positive solutions of -pu=g(x)|u|p-2u+h(x)|u|q-2u+f(x)|u|p*-2u(1) in N , where λ , α , 1 < p < N , p * = N p / ( N - p ) , the critical Sobolev exponent, and 1 < q < p * , q p . Let λ 1 + > 0 be the principal eigenvalue of -pu=g(x)|u|p-2u    in ,        g(x)|u|p>0, (2) with u 1 + > 0 the associated eigenfunction. We prove that, if N f | u 1 + | p * < 0 , N h | u 1 + | q > 0 if 1 < q < p and N h | u 1 + | q < 0 if p < q < p * , then there exist λ * > λ 1 + and α * > 0 , such that for λ [ λ 1 + , λ * ) and α [ 0 , α * ) , (1) has at least one positive solution.

Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems

Hongtao Chen, Shanghui Jia, Hehu Xie (2009)

Applications of Mathematics

In this paper we propose a method for improving the convergence rate of the mixed finite element approximations for the Stokes eigenvalue problem. It is based on a postprocessing strategy that consists of solving an additional Stokes source problem on an augmented mixed finite element space which can be constructed either by refining the mesh or by using the same mesh but increasing the order of the mixed finite element space.

Currently displaying 21 – 40 of 55