Previous Page 3

Displaying 41 – 60 of 60

Showing per page

Resonances for strictly convex obstacles

Johannes Sjöstrand (1997/1998)

Séminaire Équations aux dérivées partielles

On considère le problème de Dirichlet à l’éxtérieur d’un obstacle strictement convexe borné à bord C . Sous une hypothèse sur la variation de la courbure, on obtient à un facteur 1 + o ( 1 ) près, le nombre de résonances de module r , associées à la première racine de la fonction d’Airy.

Resonances for transparent obstacles

Georgi Popov, Georgi Vodev (1999)

Journées équations aux dérivées partielles

This paper is concerned with the distribution of the resonances near the real axis for the transmission problem for a strictly convex bounded obstacle 𝒪 in n , n 2 , with a smooth boundary. We consider two distinct cases. If the speed of propagation in the interior of the body is strictly less than that in the exterior, we obtain an infinite sequence of resonances tending rapidly to the real axis. These resonances are associated with a quasimode for the transmission problem the frequency support of...

Résonances près d’une énergie critique

Jean-François Bony (2001/2002)

Séminaire Équations aux dérivées partielles

Dans cet exposé, on décrit un travail effectué sous la direction de J. Sjöstrand. On prouve des majorations et des minorations du nombre de résonances d’un opérateur de Schrödinger semi-classique P = - h 2 Δ + V ( x ) dans des petits disques centrés en E 0 > 0 , une valeur critique de p ( x , ξ ) = ξ 2 + V ( x ) .

Riesz basis generation, eigenvalues distribution, and exponential stability for a Euler-Bernoulli beam with joint feedback control.

Bao-Zhu Guo, K. Y. Chan (2001)

Revista Matemática Complutense

Using an abstract result on Riesz basis generation for discrete operators in general Hilbert spaces, we show, in this article, that the generalized eigenfunctions of an Euler-Bernoulli beam equation with joint linear feedback control form a Riesz basis for the state space. The spectrum-determined growth condition is hence obtained. Meanwhile, the exponential stability as well as the asymptotic expansion of eigenvalues are also readily obtained by a straightforward computation.

Riesz means for the eigenfunction expansions for a class of hypo-elliptic differential operators

Giancarlo Mauceri (1981)

Annales de l'institut Fourier

We study the Riesz means for the eigenfunction expansions of a class of hypoelliptic differential operators on the Heisenberg group. The operators we consider are homogeneous with respect to dilations and invariant under the action of the unitary group. We obtain convergence results in L p norm, at Lebesgue points and almost everywhere. We also prove localization results.

Currently displaying 41 – 60 of 60

Previous Page 3