Displaying 121 – 140 of 236

Showing per page

Spectral asymptotics for manifolds with cylindrical ends

Tanya Christiansen, Maciej Zworski (1995)

Annales de l'institut Fourier

The spectrum of the Laplacian on manifolds with cylindrical ends consists of continuous spectrum of locally finite multiplicity and embedded eigenvalues. We prove a Weyl-type asymptotic formula for the sum of the number of embedded eigenvalues and the scattering phase. In particular, we obtain the optimal upper bound on the number of embedded eigenvalues less than or equal to r 2 , 𝒪 ( r n ) , where n is the dimension of the manifold.

Currently displaying 121 – 140 of 236