Darboux transformation for classical acoustic spectral problem.
We consider a stochastic Burgers equation. We show that the gradient of the corresponding transition semigroup does exist for any bounded ; and can be estimated by a suitable exponential weight. An application to some Hamilton-Jacobi equation arising in Stochastic Control is given.
Dubrovin type equations for the N -gap solution of a completely integrable system associated with a polynomial pencil is constructed and then integrated to a system of functional equations. The approach used to derive those results is a generalization of the familiar process of finding the 1-soliton (1-gap) solution by integrating the ODE obtained from the soliton equation via the substitution u = u(x + λt).
We study the Cauchy problem in ℝ³ for the modified Davey-Stewartson system , . Under certain conditions on λ₁ and λ₂, we provide a complete picture of the local and global well-posedness, scattering and blow-up of the solutions in the energy space. Methods used in the paper are based upon the perturbation theory from [Tao et al., Comm. Partial Differential Equations 32 (2007), 1281-1343] and the convexity method from [Glassey, J. Math. Phys. 18 (1977), 1794-1797].