Page 1 Next

Displaying 1 – 20 of 25

Showing per page

The homogeneous balance of undetermined coefficients method and its application

Yi Wei, Xin-Dang He, Xiao-Feng Yang (2016)

Open Mathematics

The homogeneous balance of undetermined coefficients method is firstly proposed to solve such nonlinear partial differential equations (PDEs), the balance numbers of which are not positive integers. The proposed method can also be used to derive more general bilinear equation of nonlinear PDEs. The Eckhaus equation, the KdV equation and the generalized Boussinesq equation are chosen to illustrate the validity of our method. The proposed method is also a standard and computable method, which can...

The PDE describing constant mean curvature surfaces

Hongyou Wu (2001)

Mathematica Bohemica

We give an expository account of a Weierstrass type representation of the non-zero constant mean curvature surfaces in space and discuss the meaning of the representation from the point of view of partial differential equations.

The SQP method for control constrained optimal control of the Burgers equation

Fredi Tröltzsch, Stefan Volkwein (2001)

ESAIM: Control, Optimisation and Calculus of Variations

A Lagrange–Newton–SQP method is analyzed for the optimal control of the Burgers equation. Distributed controls are given, which are restricted by pointwise lower and upper bounds. The convergence of the method is proved in appropriate Banach spaces. This proof is based on a weak second-order sufficient optimality condition and the theory of Newton methods for generalized equations in Banach spaces. For the numerical realization a primal-dual active set strategy is applied. Numerical examples are...

The SQP method for control constrained optimal control of the Burgers equation

Fredi Tröltzsch, Stefan Volkwein (2010)

ESAIM: Control, Optimisation and Calculus of Variations

A Lagrange–Newton–SQP method is analyzed for the optimal control of the Burgers equation. Distributed controls are given, which are restricted by pointwise lower and upper bounds. The convergence of the method is proved in appropriate Banach spaces. This proof is based on a weak second-order sufficient optimality condition and the theory of Newton methods for generalized equations in Banach spaces. For the numerical realization a primal-dual active set strategy is applied. Numerical examples are...

Currently displaying 1 – 20 of 25

Page 1 Next