Inégalités de Sogge bilinéaires et équation de Schrödinger non linéaire
This paper considers the existence and uniqueness of the solution to the initial boundary value problem for a class of generalized Zakharov equations in dimensions, and proves the global existence of the solution to the problem by a priori integral estimates and the Galerkin method.
We prove the existence and the invariance of a Gibbs measure associated to the defocusing sub-quintic Nonlinear Schrödinger equations on the disc of the plane . We also prove an estimate giving some intuition to what may happen in dimensions.
We construct an invariant weighted Wiener measure associated to the periodic derivative nonlinear Schrödinger equation in one dimension and establish global well-posedness for data living in its support. In particular almost surely for data in a Fourier–Lebesgue space with and scaling like , for small . We also show the invariance of this measure.