Page 1

Displaying 1 – 18 of 18

Showing per page

Large data local solutions for the derivative NLS equation

Ioan Bejenaru, Daniel Tataru (2008)

Journal of the European Mathematical Society

We consider the derivative NLS equation with general quadratic nonlinearities. In [2] the first author has proved a sharp small data local well-posedness result in Sobolev spaces with a decay structure at infinity in dimension n = 2 . Here we prove a similar result for large initial data in all dimensions n 2 .

Large deviations and support results for nonlinear Schrödinger equations with additive noise and applications

Éric Gautier (2005)

ESAIM: Probability and Statistics

Sample path large deviations for the laws of the solutions of stochastic nonlinear Schrödinger equations when the noise converges to zero are presented. The noise is a complex additive gaussian noise. It is white in time and colored in space. The solutions may be global or blow-up in finite time, the two cases are distinguished. The results are stated in trajectory spaces endowed with topologies analogue to projective limit topologies. In this setting, the support of the law of the solution is also...

Large deviations and support results for nonlinear Schrödinger equations with additive noise and applications

Éric Gautier (2010)

ESAIM: Probability and Statistics

Sample path large deviations for the laws of the solutions of stochastic nonlinear Schrödinger equations when the noise converges to zero are presented. The noise is a complex additive Gaussian noise. It is white in time and colored in space. The solutions may be global or blow-up in finite time, the two cases are distinguished. The results are stated in trajectory spaces endowed with topologies analogue to projective limit topologies. In this setting, the support of the law of the solution is...

Limitations on the control of Schrödinger equations

Reinhard Illner, Horst Lange, Holger Teismann (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We give the definitions of exact and approximate controllability for linear and nonlinear Schrödinger equations, review fundamental criteria for controllability and revisit a classical “No-go” result for evolution equations due to Ball, Marsden and Slemrod. In Section 2 we prove corresponding results on non-controllability for the linear Schrödinger equation and distributed additive control, and we show that the Hartree equation of quantum chemistry with bilinear control ( E ( t ) · x ) u is not controllable...

Local minimizers with vortex filaments for a Gross-Pitaevsky functional

Robert L. Jerrard (2007)

ESAIM: Control, Optimisation and Calculus of Variations

This paper gives a rigorous derivation of a functional proposed by Aftalion and Rivière [Phys. Rev. A64 (2001) 043611] to characterize the energy of vortex filaments in a rotationally forced Bose-Einstein condensate. This functional is derived as a Γ-limit of scaled versions of the Gross-Pitaevsky functional for the wave function of such a condensate. In most situations, the vortex filament energy functional is either unbounded below or has only trivial minimizers, but we establish the existence...

Long time dynamics for the one dimensional non linear Schrödinger equation

Nicolas Burq, Laurent Thomann, Nikolay Tzvetkov (2013)

Annales de l’institut Fourier

In this article, we first present the construction of Gibbs measures associated to nonlinear Schrödinger equations with harmonic potential. Then we show that the corresponding Cauchy problem is globally well-posed for rough initial conditions in a statistical set (the support of the measures). Finally, we prove that the Gibbs measures are indeed invariant by the flow of the equation. As a byproduct of our analysis, we give a global well-posedness and scattering result for the L 2 critical and super-critical...

Long-time asymptotics for the nonlinear heat equation with a fractional Laplacian in a ball

Vladimir Varlamov (2000)

Studia Mathematica

The nonlinear heat equation with a fractional Laplacian [ u t + ( - Δ ) α / 2 u = u 2 , 0 < α 2 ] , is considered in a unit ball B . Homogeneous boundary conditions and small initial conditions are examined. For 3/2 + ε₁ ≤ α ≤ 2, where ε₁ > 0 is small, the global-in-time mild solution from the space C ( [ 0 , ) , H κ ( B ) ) with κ < α - 1/2 is constructed in the form of an eigenfunction expansion series. The uniqueness is proved for 0 < κ < α - 1/2, and the higher-order long-time asymptotics is calculated.

Currently displaying 1 – 18 of 18

Page 1