The search session has expired. Please query the service again.

Displaying 301 – 320 of 434

Showing per page

Uniqueness theorems for steady, compressible, heat-conducting fluids: exterior domains

Maria-Rosaria Padula (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si fornisce un teorema di unicità per moti stazionari regolari di fluidi compressibili, viscosi, termicamente conduttori, svolgentisi in regioni esterne a domini compatti della spazio fisico.

Von Kármán equations. III. Solvability of the von Kármán equations with conditions for geometry of the boundary of the domain

Július Cibula (1991)

Applications of Mathematics

Solvability of the general boundary value problem for von Kármán system of nonlinear equations is studied. The problem is reduced to an operator equation. It is shown that the corresponding functional of energy is coercive and weakly lower semicontinuous. Then the functional of energy attains absolute minimum which is a variational solution of the problem.

Weak and classical solutions of equations of motion for third grade fluids

Jean Marie Bernard (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper shows that the decomposition method with special basis, introduced by Cioranescu and Ouazar, allows one to prove global existence in time of the weak solution for the third grade fluids, in three dimensions, with small data. Contrary to the special case where | α 1 + α 2 | ( 24 ν β ) 1 / 2 , studied by Amrouche and Cioranescu, the H1 norm of the velocity is not bounded for all data. This fact, which led others to think, in contradiction to this paper, that the method of decomposition could not apply to...

Currently displaying 301 – 320 of 434