Régularité de la solution des équations cinétiques en physique des plasmas
This paper is devoted to the study of the regularity of solutions to some systems of reaction–diffusion equations. In particular, we show the global boundedness and regularity of the solutions in one and two dimensions. In addition, we discuss the Hausdorff dimension of the set of singularities in higher dimensions. Our approach is inspired by De Giorgi’s method for elliptic regularity with rough coefficients. The proof uses the specific structure of the system to be considered and is not a mere...
In the paper some solution properties of the Love's equation are compared with those of the classical wave equation for a certain class of boundary conditions. The method of small parameter is used.
In the dynamical theory of granular matter the so-called table problem consists in studying the evolution of a heap of matter poured continuously onto a bounded domain . The mathematical description of the table problem, at an equilibrium configuration, can be reduced to a boundary value problem for a system of partial differential equations. The analysis of such a system, also connected with other mathematical models such as the Monge–Kantorovich problem, is the object of this paper. Our main...
This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher...
This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher...