The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 55

Showing per page

On a model of rotating superfluids

Sylvia Serfaty (2001)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an energy-functional describing rotating superfluids at a rotating velocity ω , and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical ω above which energy-minimizers have vortices, evaluations of the minimal energy as a function of ω , and the derivation of a limiting free-boundary problem.

On a model of rotating superfluids

Sylvia Serfaty (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an energy-functional describing rotating superfluids at a rotating velocity ω, and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical ω above which energy-minimizers have vortices, evaluations of the minimal energy as a function of ω, and the derivation of a limiting free-boundary problem.

On irrotational flows through cascades of profiles in a layer of variable thickness

Miloslav Feistauer (1984)

Aplikace matematiky

The paper is devoted to the study of solvability of boundary value problems for the stream function, describing non-viscous, irrotional, subsonic flowes through cascades of profiles in a layer of variable thickness. From the definition of a classical solution the variational formulation is derive and the concept of a weak solution is introduced. The proof of the existence and uniqueness of the weak solution is based on the monotone operator theory.

Currently displaying 1 – 20 of 55

Page 1 Next