Previous Page 2

Displaying 21 – 37 of 37

Showing per page

Inverse problem for a physiologically structured population model with variable-effort harvesting

Ruslan V. Andrusyak (2017)

Open Mathematics

We consider the inverse problem of determining how the physiological structure of a harvested population evolves in time, and of finding the time-dependent effort to be expended in harvesting, so that the weighted integral of the density, which may be, for example, the total number of individuals or the total biomass, has prescribed dynamics. We give conditions for the existence of a unique, global, weak solution to the problem. Our investigation is carried out using the method of characteristics...

Inverse Problem for Fractional Diffusion Equation

Tuan, Vu Kim (2011)

Fractional Calculus and Applied Analysis

MSC 2010: 26A33, 33E12, 34K29, 34L15, 35K57, 35R30We prove that by taking suitable initial distributions only finitely many measurements on the boundary are required to recover uniquely the diffusion coefficient of a one dimensional fractional diffusion equation. If a lower bound on the diffusion coefficient is known a priori then even only two measurements are sufficient. The technique is based on possibility of extracting the full boundary spectral data from special lateral measurements.

Inverse problem for semilinear ultraparabolic equation of higher order

Nataliya Protsakh (2015)

Mathematica Bohemica

We study the existence and the uniqueness of the weak solution of an inverse problem for a semilinear higher order ultraparabolic equation with Lipschitz nonlinearity. The main aim is to determine the weak solution of the equation and some functions that depend on the time variable, appearing on the right-hand side of the equation. The overdetermination conditions introduced are of integral type. In order to prove the solvability of this problem in Sobolev spaces we use the Galerkin method and the...

Inverse Scattering for Waveguides

Hiroshi Isozaki, Yaroslav Kurylev, Matti Lassas (2006/2007)

Séminaire de théorie spectrale et géométrie

We study the inverse scattering problem for a waveguide ( M , g ) with cylindrical ends, M = M c α = 1 N ( Ω α × ( 0 , ) ) , where each Ω α × ( 0 , ) has a product type metric. We prove, that the physical scattering matrix, measured on just one of these ends, determines ( M , g ) up to an isometry.

Inverse scattering via nonlinear integral equations method for a sound-soft crack with phaseless data

Peng Gao, Heping Dong, Fuming Ma (2018)

Applications of Mathematics

We consider the inverse scattering of time-harmonic plane waves to reconstruct the shape of a sound-soft crack from a knowledge of the given incident field and the phaseless data, and we check the invariance of far field data with respect to translation of the crack. We present a numerical method that is based on a system of nonlinear and ill-posed integral equations, and our scheme is easy and simple to implement. The numerical implementation is described and numerical examples are presented to...

Invisible obstacles

A. G. Ramm (2007)

Annales Polonici Mathematici

It is proved that one can choose a control function on an arbitrarilly small open subset of the boundary of an obstacle so that the total radiation from this obstacle for a fixed direction of the incident plane wave and for a fixed wave number will be as small as one wishes. The obstacle is called "invisible" in this case.

Currently displaying 21 – 37 of 37

Previous Page 2