Displaying 341 – 360 of 419

Showing per page

Spazi BV e di Nikolskii e applicazioni al problema di Stefan

Alberto Farina (1995)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Questa Nota è dedicata a mettere in evidenza alcune proprietà degli spazi B V Ω = N 1 Ω delle funzioni a variazione limitata e degli spazi di Nikolskii N 1 λ Ω = N λ Ω ed N λ , 0 Ω , ( λ 0 , 1 ), che non mi risulta siano già state esposte nella forma generale qui enunciata, quali la non separabilità, l'essere il duale di uno spazio di Banach separabile, la convergenza e la compattezza debole * in L W * 0 , T ; N λ Ω e le loro applicazioni al classico problema di Stefan bifase.

Spreading and vanishing in nonlinear diffusion problems with free boundaries

Yihong Du, Bendong Lou (2015)

Journal of the European Mathematical Society

We study nonlinear diffusion problems of the form u t = u x x + f ( u ) with free boundaries. Such problems may be used to describe the spreading of a biological or chemical species, with the free boundary representing the expanding front. For special f ( u ) of the Fisher-KPP type, the problem was investigated by Du and Lin [DL]. Here we consider much more general nonlinear terms. For any f ( u ) which is C 1 and satisfies f ( 0 ) = 0 , we show that the omega limit set ω ( u ) of every bounded positive solution is determined by a stationary solution....

Stefan problem in a 2D case

Piotr Bogusław Mucha (2006)

Colloquium Mathematicae

The aim of this paper is to analyze the well posedness of the one-phase quasi-stationary Stefan problem with the Gibbs-Thomson correction in a two-dimensional domain which is a perturbation of the half plane. We show the existence of a unique regular solution for an arbitrary time interval, under suitable smallness assumptions on initial data. The existence is shown in the Besov-Slobodetskiĭ class with sharp regularity in the L₂-framework.

Stefan problems with a concentrated capacity

Enrico Magenes (1998)

Bollettino dell'Unione Matematica Italiana

Vengono brevemente studiati i problemi di Stefan su «capacità concentrate»,seguendo l'approccio recentemente introdotto di G. Savaré e A. Visintin.

Stokes equations in asymptotically flat layers

Helmut Abels (2005)

Banach Center Publications

We study the generalized Stokes resolvent equations in asymptotically flat layers, which can be considered as compact perturbations of an infinite (flat) layer Ω = n - 1 × ( - 1 , 1 ) . Besides standard non-slip boundary conditions, we consider a mixture of slip and non-slip boundary conditions on the upper and lower boundary, respectively. We discuss the results on unique solvability of the generalized Stokes resolvent equations as well as the existence of a bounded H -calculus for the associated Stokes operator and some...

Sur un problème à frontière libre de la physique des plasmas

H. Gourgeon, Jacqueline Mossino (1979)

Annales de l'institut Fourier

Ce papier porte sur l’étude mathématique d’une équation du type de Grad-Mercier qui décrit, dans certaines circonstances, l’équilibre d’un plasma confiné [H. Grad, P.N. Hu et D.C. Stevens, Proc. Nat. Acad. Sci. USA, 72,n 10 (1975), 3789–3793, C. Mercier, Publication of Euratom, CEA, Luxembourg (1974), C. Mercier, Communications personnelles à R. Temam et aux auteurs]. Il s’agit de trouver une fonction “régulière” u solution du système - Δ u + λ g [ δ ( u ) ] = 0 dans Ω , u = constante (inconnue) > 0 sur Ω , Ω u n = I , Ω est un ouvert borné régulier de R n , et δ ( u ) ( x ) = mes { y Ω u ( x ) < u ( y ) < 0 } . L’opérateur non linéaire...

The asymptotic behaviour of surfaces with prescribed mean curvature near meeting points of fixed and free boundaries

Frank Müller (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We study the shape of stationary surfaces with prescribed mean curvature in the Euclidean 3-space near boundary points where Plateau boundaries meet free boundaries. In deriving asymptotic expansions at such points, we generalize known results about minimal surfaces due to G. Dziuk. The main difficulties arise from the fact that, contrary to minimal surfaces, surfaces with prescribed mean curvature do not meet the support manifold perpendicularly along their free boundary, in general.

The BV solution of the parabolic equation with degeneracy on the boundary

Huashui Zhan, Shuping Chen (2016)

Open Mathematics

Consider a parabolic equation which is degenerate on the boundary. By the degeneracy, to assure the well-posedness of the solutions, only a partial boundary condition is generally necessary. When 1 ≤ α < p – 1, the existence of the local BV solution is proved. By choosing some kinds of test functions, the stability of the solutions based on a partial boundary condition is established.

Currently displaying 341 – 360 of 419