Displaying 81 – 100 of 419

Showing per page

Application of relaxation scheme to degenerate variational inequalities

Jela Babušíková (2001)

Applications of Mathematics

In this paper we are concerned with the solution of degenerate variational inequalities. To solve this problem numerically, we propose a numerical scheme which is based on the relaxation scheme using non-standard time discretization. The approximate solution on each time level is obtained in the iterative way by solving the corresponding elliptic variational inequalities. The convergence of the method is proved.

Approximation of a nonlinear thermoelastic problem with a moving boundary via a fixed-domain method

Jindřich Nečas, Tomáš Roubíček (1990)

Aplikace matematiky

The thermoelastic stresses created in a solid phase domain in the course of solidification of a molten ingot are investigated. A nonlinear behaviour of the solid phase is admitted, too. This problem, obtained from a real situation by many simplifications, contains a moving boundary between the solid and the liquid phase domains. To make the usage of standard numerical packages possible, we propose here a fixed-domain approximation by means of including the liquid phase domain into the problem (in...

Approximation of Parabolic Equations Using the Wasserstein Metric

David Kinderlehrer, Noel J. Walkington (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We illustrate how some interesting new variational principles can be used for the numerical approximation of solutions to certain (possibly degenerate) parabolic partial differential equations. One remarkable feature of the algorithms presented here is that derivatives do not enter into the variational principles, so, for example, discontinuous approximations may be used for approximating the heat equation. We present formulae for computing a Wasserstein metric which enters into the variational...

Asymptotic analysis for the Ginzburg-Landau equations

Tristan Rivière (1999)

Bollettino dell'Unione Matematica Italiana

Questo lavoro costituisce un survey sui problemi di limite asintotico per le soluzioni delle equazioni di Ginzburg-Landau in dimensione due. Vengono presentati essenzialmente i risultati di [BBH] e [BR] sulla formazione ed il comportamento asintotico dei vortici in un dominio bidimensionale nel caso fortemente repulsivo (large K limit).

ATP Production and Necrosis Formation in a Tumour Spheroid Model

A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli (2010)

Mathematical Modelling of Natural Phenomena

Mathematical models of tumour spheroids, proposed since the early seventies, have been generally formulated in terms of a single diffusive nutrient which is critical for cell replication and cell viability. Only recently, attempts have been made to incorporate in the models the cell energy metabolism, by considering the interplay between glucose, oxygen and lactate (or pH). By assuming glucose and lactate as the only fuel substrates, we propose a simple model for the cell ATP production which takes...

Currently displaying 81 – 100 of 419