Convergent numerical approximations of the thermomechanical phase transitions in shape memory alloys.
We consider solutions to a free boundary problem for the heat equation, describing the propagation of flames. Suppose there is a bounded domain Ω ⊂ QT = Rn x (0,T) for some T > 0 and a function u > 0 in Ω such thatut = Δu, in Ω,u = 0 and |∇u| = 1, on Γ := ∂Ω ∩ QT,u(·,0) = u0, on Ω0,where Ω0 is a given domain in Rn and u0 is a positive and continuous function in Ω0, vanishing on ∂Ω0. If Ω0 is convex and u0 is concave in Ω0, then we show that (u,Ω) is unique and the time sections...
The dual variational formulation of some free boundary value problem is given and its approximation by finite element method is studied, using piecewise linear elements with non-positive divergence.
The phase relaxation model is a diffuse interface model with small parameter ε which consists of a parabolic PDE for temperature θ and an ODE with double obstacles for phase variable χ. To decouple the system a semi-explicit Euler method with variable step-size τ is used for time discretization, which requires the stability constraint τ ≤ ε. Conforming piecewise linear finite elements over highly graded simplicial meshes with parameter h are further employed for space discretization. A posteriori...
This note addresses the Cauchy problem for the gradient flow equation in a Hilbert space