Displaying 21 – 40 of 261

Showing per page

On a Liouville type theorem for isotropic homogeneous fully nonlinear elliptic equations in dimension two

Jean Dolbeault, Régis Monneau (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper we establish a Liouville type theorem for fully nonlinear elliptic equations related to a conjecture of De Giorgi in 2 . We prove that if the level lines of a solution have bounded curvature, then these level lines are straight lines. As a consequence, the solution is one-dimensional. The method also provides a result on free boundary problems of Serrin type.

On a mathematical model for the crystallization of polymers

Maria Pia Gualdani (2003)

Bollettino dell'Unione Matematica Italiana

We consider a mathematical model proposed in [1] for the cristallization of polymers, describing the evolution of temperature, crystalline volume fraction, number and average size of crystals. The model includes a constraint W e q on the crystal volume fraction. Essentially, the model is a system of both second order and first order evolutionary partial differential equations with nonlinear terms which are Lipschitz continuous, as in [1], or Hölder continuous, as in [3]. The main novelty here is the...

On a non-stationary free boundary transmission problem with continuous extraction and convection, arising in industrial processes

Bui Ton, Grzegorz Łukaszewicz (1992)

Banach Center Publications

The existence of a weak solution of a non-stationary free boundary transmission problem arising in the production of industrial materials is established. The process is governed by a coupled system involving the Navier--Stokes equations and a non-linear heat equation. The stationary case was studied in [7].

On a parabolic integrodifferential equation of Barbashin type

B. G. Pachpatte (2011)

Commentationes Mathematicae Universitatis Carolinae

In the present paper we study some basic qualitative properties of solutions of a nonlinear parabolic integrodifferential equation of Barbashin type which occurs frequently in applications. The fundamental integral inequality with explicit estimate is used to establish the results.

On a quasi-variational inequality arising in semiconductor theory.

José-Francisco Rodrigues (1992)

Revista Matemática de la Universidad Complutense de Madrid

Some new mathematical results of existence and uniqueness of solutions are obtained for a class of quasi-variational inequalities modeling the free boundary problem for the determination of the depletion zone in reverse biased semiconductor diodes. The corresponding one (or two) obstacle implicit problems are solved by direct methods with weak regularity estimates for mixed boundary value elliptic problems of second order.

On a stochastic parabolic PDE arising in climatology.

Gregorio Díaz, Jesús Ildefonso Díaz (2002)

RACSAM

Estudiamos la existencia y unicidad de soluciones de una ecuación estocástica en derivadas parciales de tipo parabólico propuesta por R. North y R. F. Cahalan en 1982 para la modelización de variabilidad no determinista (como es el caso, por ejemplo, de la acción de volcanes) en el marco de los modelos de balance de energía. El punto más delicado se refiere a la unicidad de soluciones debido a la presencia de un grafo multívoco β en el término de la derecha de la ecuación. En contraste con el caso...

On a variant of random homogenization theory: convergence of the residual process and approximation of the homogenized coefficients

Frédéric Legoll, Florian Thomines (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the variant of stochastic homogenization theory introduced in [X. Blanc, C. Le Bris and P.-L. Lions, C. R. Acad. Sci. Série I 343 (2006) 717–724.; X. Blanc, C. Le Bris and P.-L. Lions, J. Math. Pures Appl. 88 (2007) 34–63.]. The equation under consideration is a standard linear elliptic equation in divergence form, where the highly oscillatory coefficient is the composition of a periodic matrix with a stochastic diffeomorphism. The homogenized limit of this problem has been identified...

On a volume constrained variational problem in SBV 2 ( Ω ) : part I

Ana Cristina Barroso, José Matias (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the problem of minimizing the energy E ( u ) : = Ω | u ( x ) | 2 d x + S u Ω 1 + | [ u ] ( x ) | d H N - 1 ( x ) among all functions u S B V 2 ( Ω ) for which two level sets { u = l i } have prescribed Lebesgue measure α i . Subject to this volume constraint the existence of minimizers for E ( · ) is proved and the asymptotic behaviour of the solutions is investigated.

On a Volume Constrained Variational Problem in SBV²(Ω): Part I

Ana Cristina Barroso, José Matias (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the problem of minimizing the energy E ( u ) : = Ω | u ( x ) | 2 d x + S u Ω 1 + | [ u ] ( x ) | d H N - 1 ( x ) among all functions u ∈ SBV²(Ω) for which two level sets { u = l i } have prescribed Lebesgue measure α i . Subject to this volume constraint the existence of minimizers for E(.) is proved and the asymptotic behaviour of the solutions is investigated.

Currently displaying 21 – 40 of 261