On a inequality of Friedrichs.
In this paper we establish a Liouville type theorem for fully nonlinear elliptic equations related to a conjecture of De Giorgi in . We prove that if the level lines of a solution have bounded curvature, then these level lines are straight lines. As a consequence, the solution is one-dimensional. The method also provides a result on free boundary problems of Serrin type.
We consider a mathematical model proposed in [1] for the cristallization of polymers, describing the evolution of temperature, crystalline volume fraction, number and average size of crystals. The model includes a constraint on the crystal volume fraction. Essentially, the model is a system of both second order and first order evolutionary partial differential equations with nonlinear terms which are Lipschitz continuous, as in [1], or Hölder continuous, as in [3]. The main novelty here is the...
The existence of a weak solution of a non-stationary free boundary transmission problem arising in the production of industrial materials is established. The process is governed by a coupled system involving the Navier--Stokes equations and a non-linear heat equation. The stationary case was studied in [7].
In the present paper we study some basic qualitative properties of solutions of a nonlinear parabolic integrodifferential equation of Barbashin type which occurs frequently in applications. The fundamental integral inequality with explicit estimate is used to establish the results.
Some new mathematical results of existence and uniqueness of solutions are obtained for a class of quasi-variational inequalities modeling the free boundary problem for the determination of the depletion zone in reverse biased semiconductor diodes. The corresponding one (or two) obstacle implicit problems are solved by direct methods with weak regularity estimates for mixed boundary value elliptic problems of second order.
Estudiamos la existencia y unicidad de soluciones de una ecuación estocástica en derivadas parciales de tipo parabólico propuesta por R. North y R. F. Cahalan en 1982 para la modelización de variabilidad no determinista (como es el caso, por ejemplo, de la acción de volcanes) en el marco de los modelos de balance de energía. El punto más delicado se refiere a la unicidad de soluciones debido a la presencia de un grafo multívoco β en el término de la derecha de la ecuación. En contraste con el caso...
We prove an existence theorem of Cauchy-Kovalevskaya type for the equation where f is a polynomial with respect to the last k variables.
We consider the variant of stochastic homogenization theory introduced in [X. Blanc, C. Le Bris and P.-L. Lions, C. R. Acad. Sci. Série I 343 (2006) 717–724.; X. Blanc, C. Le Bris and P.-L. Lions, J. Math. Pures Appl. 88 (2007) 34–63.]. The equation under consideration is a standard linear elliptic equation in divergence form, where the highly oscillatory coefficient is the composition of a periodic matrix with a stochastic diffeomorphism. The homogenized limit of this problem has been identified...
We consider the problem of minimizing the energyamong all functions for which two level sets have prescribed Lebesgue measure . Subject to this volume constraint the existence of minimizers for is proved and the asymptotic behaviour of the solutions is investigated.
We consider the problem of minimizing the energy among all functions u ∈ SBV²(Ω) for which two level sets have prescribed Lebesgue measure . Subject to this volume constraint the existence of minimizers for E(.) is proved and the asymptotic behaviour of the solutions is investigated.
We derive an inequality for a local solution of a free boundary problem for a viscous compressible heat-conducting capillary fluid. This inequality is crucial to proving the global existence of solutions belonging to certain anisotropic Sobolev-Slobodetskiĭ spaces and close to an equilibrium state.
In this paper, a nonlinear backward heat problem with time-dependent coefficient in the unbounded domain is investigated. A modified regularization method is established to solve it. New error estimates for the regularized solution are given under some assumptions on the exact solution.