Displaying 861 – 880 of 1901

Showing per page

Modeling Non-Stationary Processes of Diffusion of Solute Substances in the Near-Bottom Layer ofWater Reservoirs: Variation of the Direction of Flows and Assessment of Admissible Biogenic Load

V. V. Kozlov (2009)

Mathematical Modelling of Natural Phenomena

The paper is devoted to mathematical modelling and numerical computations of a nonstationary free boundary problem. The model is based on processes of molecular diffusion of some products of chemical decomposition of a solid organic substance concentrated in bottom sediments. It takes into account non-stationary multi-component and multi-stage chemical decomposition of organic substances and the processes of sorption desorption under aerobic and anaerobic conditions. Such a model allows one to...

Modulation space estimates for Schrödinger type equations with time-dependent potentials

Wei Wei (2014)

Czechoslovak Mathematical Journal

We give a new representation of solutions to a class of time-dependent Schrödinger type equations via the short-time Fourier transform and the method of characteristics. Moreover, we also establish some novel estimates for oscillatory integrals which are associated with the fractional power of negative Laplacian ( - Δ ) κ / 2 with 1 κ 2 . Consequently the classical Hamiltonian corresponding to the previous Schrödinger type equations is studied. As applications, a series of new boundedness results for the corresponding...

Monge solutions for discontinuous hamiltonians

Ariela Briani, Andrea Davini (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an Hamilton-Jacobi equation of the form H ( x , D u ) = 0 x Ω N , ( 1 ) where H ( x , p ) is assumed Borel measurable and quasi-convex in p . The notion of Monge solution, introduced by Newcomb and Su, is adapted to this setting making use of suitable metric devices. We establish the comparison principle for Monge sub and supersolution, existence and uniqueness for equation (1) coupled with Dirichlet boundary conditions, and a stability result. The relation among Monge and Lipschitz subsolutions is also discussed.

Monge solutions for discontinuous Hamiltonians

Ariela Briani, Andrea Davini (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an Hamilton-Jacobi equation of the form

 H ( x , D u ) = 0 x Ω N , ( 1 ) 
 where H(x,p) is assumed Borel measurable and quasi-convex in p. The notion of Monge solution, introduced by Newcomb and Su, is adapted to this setting making use of suitable metric devices. We establish the comparison principle for Monge sub and supersolution, existence and uniqueness for equation ([see full text]) coupled with Dirichlet boundary conditions, and a stability result. The relation among Monge and Lipschitz subsolutions is also...

Monotone iteration for infinite systems of parabolic equations with functional dependence

Anna Pudełko (2007)

Annales Polonici Mathematici

We consider the initial value problem for an infinite system of differential-functional equations of parabolic type. General operators of parabolic type of second order with variable coefficients are considered and the system is weakly coupled. The solutions are obtained by the monotone iterative method. We prove theorems on weak partial differential-functional inequalities as well the existence and uniqueness theorems in the class of continuous bounded functions and in the class of functions satisfying...

Motion planning for a class of boundary controlled linear hyperbolic PDE’s involving finite distributed delays

Frank Woittennek, Joachim Rudolph (2003)

ESAIM: Control, Optimisation and Calculus of Variations

Motion planning and boundary control for a class of linear PDEs with constant coefficients is presented. With the proposed method transitions from rest to rest can be achieved in a prescribed finite time. When parameterizing the system by a flat output, the system trajectories can be calculated from the flat output trajectory by evaluating definite convolution integrals. The compact kernels of the integrals can be calculated using infinite series. Explicit formulae are derived employing Mikusiński’s...

Motion planning for a class of boundary controlled linear hyperbolic PDE's involving finite distributed delays

Frank Woittennek, Joachim Rudolph (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Motion planning and boundary control for a class of linear PDEs with constant coefficients is presented. With the proposed method transitions from rest to rest can be achieved in a prescribed finite time. When parameterizing the system by a flat output, the system trajectories can be calculated from the flat output trajectory by evaluating definite convolution integrals. The compact kernels of the integrals can be calculated using infinite series. Explicit formulae are derived employing ...

Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces

Mikhail Karpukhin, Gerasim Kokarev, Iosif Polterovich (2014)

Annales de l’institut Fourier

We prove two explicit bounds for the multiplicities of Steklov eigenvalues σ k on compact surfaces with boundary. One of the bounds depends only on the genus of a surface and the index k of an eigenvalue, while the other depends as well on the number of boundary components. We also show that on any given Riemannian surface with smooth boundary the multiplicities of Steklov eigenvalues σ k are uniformly bounded in k .

Multiscale Finite Element approach for “weakly” random problems and related issues

Claude Le Bris, Frédéric Legoll, Florian Thomines (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We address multiscale elliptic problems with random coefficients that are a perturbation of multiscale deterministic problems. Our approach consists in taking benefit of the perturbative context to suitably modify the classical Finite Element basis into a deterministic multiscale Finite Element basis. The latter essentially shares the same approximation properties as a multiscale Finite Element basis directly generated on the random problem. The specific reference method that we use is the Multiscale...

Multiscale finite element coarse spaces for the application to linear elasticity

Marco Buck, Oleg Iliev, Heiko Andrä (2013)

Open Mathematics

We extend the multiscale finite element method (MsFEM) as formulated by Hou and Wu in [Hou T.Y., Wu X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 1997, 134(1), 169–189] to the PDE system of linear elasticity. The application, motivated by the multiscale analysis of highly heterogeneous composite materials, is twofold. Resolving the heterogeneities on the finest scale, we utilize the linear MsFEM basis for the construction...

Multivalued nonpositone problems

David Arcoya, Marco Calahorrano (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this note, the existence of non-negative solutions for some multivalued non-positone elliptic problems is studied.

Network tomography.

Berenstein, Carlos A., Gavilánez, Franklin (2007)

Revista Colombiana de Matemáticas

New existence and stability results for partial fractional differential inclusions with multiple delay

Saïd Abbas, Wafaa A. Albarakati, Mouffak Benchohra, Mohamed Abdalla Darwish, Eman M. Hilal (2015)

Annales Polonici Mathematici

We discuss the existence of solutions and Ulam's type stability concepts for a class of partial functional fractional differential inclusions with noninstantaneous impulses and a nonconvex valued right hand side in Banach spaces. An example is provided to illustrate our results.

New optimal regularity results for infinite-dimensional elliptic equations

Enrico Priola, Lorenzo Zambotti (2000)

Bollettino dell'Unione Matematica Italiana

In questo articolo si ottengono stime di Schauder di tipo nuovo per equazioni ellittiche infinito-dimensionali del secondo ordine con coefficienti Hölderiani a valori nello spazio degli operatori Hilbert-Schmidt. In particolare si mostra che la derivata seconda delle soluzioni è Hilbert-Schmidt.

Currently displaying 861 – 880 of 1901