Spectre conjoint d'opérateurs pseudodifférentiels qui commutent
We study general continuity properties for an increasing family of Banach spaces of classes for pseudo-differential symbols, where was introduced by J. Sjöstrand in 1993. We prove that the operators in are Schatten-von Neumann operators of order on . We prove also that and , provided . If instead , then . By modifying the definition of the -spaces, one also obtains symbol classes related to the spaces.
The symbol calculus on the upper half plane is studied from the viewpoint of the Kirillov theory of orbits. The main result is the -estimates for Fuchs type pseudodifferential operators.
Si danno condizioni sufficienti e condizioni necessarie affinché il problema di Cauchy per alcuni operatori di tipo Schrödinger sia ben posto in spazi di Sobolev. Gli operatori qui considerati sono operatori di Schrödinger con potenziali vettoriali complessi, una generalizzazione degli operatori di 2-evoluzione nel senso di Petrowsky, e alcuni sistemi tipo Leray-Volevich di operatori lineari a derivate parziali. Il metodo che usiamo in questo articolo è la simmetrizazione degli operatori non dipendenti...