Construction de solutions nulles et singulières pour des opérateurs de type principal
Given a smooth family of vector fields satisfying Chow-Hörmander’s condition of step 2 and a regularity assumption, we prove that the Sobolev spaces of fractional order constructed by the standard functional analysis can actually be “computed” with a simple formula involving the sub-riemannian distance.Our approach relies on a microlocal analysis of translation operators in an anisotropic context. It also involves classical estimates of the heat-kernel associated to the sub-elliptic Laplacian.
This survey of the work of the author with several collaborators presents the way groupoids appear and can be used in index theory. We define the general tools, and apply them to the case of manifolds with corners, ending with a topological index theorem.
For a principal type pseudodifferential operator, we prove that condition implies local solvability with a loss of 3/2 derivatives. We use many elements of Dencker’s paper on the proof of the Nirenberg-Treves conjecture and we provide some improvements of the key energy estimates which allows us to cut the loss of derivatives from for any (Dencker’s most recent result) to 3/2 (the present paper). It is already known that condition doesnotimply local solvability with a loss of 1 derivative,...
Les racines carrées d’opérateurs différentiels accrétifs ont été définies et étudiées par Kato. Dans le cas d’opérateurs différentiels à coefficients , les racines carrées sont des opérateurs pseudo-différentiels. Le cas des opérateurs différentiels à coefficients mesurables et bornés conduit à des racines carrées au-delà des opérateurs pseudo-différentiels. Ces nouveaux opérateurs s’étudient grâce à des mesures de Carleson.
Let and let be pseudo-differential operators with symbols , where , and . Let , be weights in Muckenhoupt classes , for some . We establish a two-weight inequality for commutators generated by pseudo-differential operators with weighted BMO functions , namely, the commutator is bounded from into . Furthermore, the range of can be extended to the whole .