Displaying 2201 – 2220 of 4762

Showing per page

Le théorème de Riesz-Raikov-Bourgain pour un endomorphisme algébrique de p

Jean-Claude Lootgieter (2007)

Annales de l’institut Fourier

Le théorème classique de Riesz-Raikov assure que, pour tout entier θ > 1 et toute f de L 1 ( 𝕋 ) , où 𝕋 = / , les moyennes 1 N 1 N f ( θ n x ) convergent vers 𝕋 f ( t ) d t pour presque tout point x de . J.Bourgain (cf.Israël Math. Conf. Proc. 1990) a prouvé que la convergence précédente a lieu pour tout réel algébrique θ > 1 et toute  f de  L 2 ( 𝕋 ) . Dans cet article nous prouvons que, si ϕ est un endomorphisme de  p algébrique sur , dont les valeurs propres sont toutes de module  > 1 , alors pour toute f de L 2 ( 𝕋 p ) , les moyennes ( 1 / N ) 1 N f ( ϕ n x ) convergent vers 𝕋 p f ( t ) d t pour presque tout point x de p . Nous...

Lelek fan from a projective Fraïssé limit

Dana Bartošová, Aleksandra Kwiatkowska (2015)

Fundamenta Mathematicae

We show that a natural quotient of the projective Fraïssé limit of a family that consists of finite rooted trees is the Lelek fan. Using this construction, we study properties of the Lelek fan and of its homeomorphism group. We show that the Lelek fan is projectively universal and projectively ultrahomogeneous in the class of smooth fans. We further show that the homeomorphism group of the Lelek fan is totally disconnected, generated by every neighbourhood of the identity, has a dense conjugacy...

Lemme de l'ombre et non divergence des horosphères d'une variété géométriquement finie

Barbara Schapira (2004)

Annales de l’institut Fourier

Dans cet article, nous établissons dans un premier temps un lemme de l'ombre dans le cas des variétés géométriquement finies à courbure négative variable. Ce théorème donne des estimées très précises de la décroissance de la mesure de Patterson des ombres, sur le bord à l'infini de telles variétés. Nous en déduisons un résultat de non divergence des horosphères. Plus précisément, nous considérons certaines moyennes naturelles sur de grandes boules horosphériques, dont nous...

Lemme de Moser feuilleté et clasifications des variétés de Poisson régulières.

G. Héctor, E. Macías, M. Saralegui (1989)

Publicacions Matemàtiques

Regular Poisson structures with fixed characteristic foliation F are described by means of foliated symplectic forms. Associated to each of these structures, there is a class in the second group of foliated cohomology H2(F). Using a foliated version of Moser's lemma, we study the isotopy classes of these structures in relation with their cohomology class. Explicit examples, with dim F = 2, are described.

Length minimizing Hamiltonian paths for symplectically aspherical manifolds

Ely Kerman, François Lalonde (2003)

Annales de l’institut Fourier

In this note we consider the length minimizing properties of Hamiltonian paths generated by quasi-autonomous Hamiltonians on symplectically aspherical manifolds. Motivated by the work of Polterovich and Schwarz, we study the role, in the Floer complex of the generating Hamiltonian, of the global extrema which remain fixed as the time varies. Our main result determines a natural condition which implies that the corresponding path minimizes the positive Hofer length. We use this to prove that a quasi-autonomous Hamiltonian...

Currently displaying 2201 – 2220 of 4762